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Cosmic inflation

Image: Planck/ESA

Must explain the observed curvature perturbations (+ several fine-tuning
problems)⇒ Cosmic inflation

Assume standard cosmology: inflation, reheating, hot Big Bang epoch
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Scalar fields in de Sitter space
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Scalar fields in de Sitter space

Assume there is a scalar field χ with the Lagrangian

L =
1
2
∂µχ∂µχ−

1
2

m2χ2

Assume the field is not the inflaton field but a spectator field

Tommi Tenkanen Dark matter from scalar field fluctuations 9/4/2020 4 / 22



Scalar fields in de Sitter space

Assume there is a scalar field χ with the Lagrangian

L =
1
2
∂µχ∂µχ−

1
2

m2χ2

Assume the field is not the inflaton field but a spectator field

Tommi Tenkanen Dark matter from scalar field fluctuations 9/4/2020 4 / 22



Scalar fields in de Sitter space

Assume there is a scalar field χ with the Lagrangian

L =
1
2
∂µχ∂µχ−

1
2

m2χ2

Assume the field is not the inflaton field but a spectator field

Tommi Tenkanen Dark matter from scalar field fluctuations 9/4/2020 4 / 22



Scalar fields in de Sitter space

If the field is light (m < H∗) it acquires fluctuations during inflation

The scalar field starts to perform random walk
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Distribution of field values

What is the distribution of field values at the end of inflation?
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Stochastic approach

Using the stochastic approach1it can be shown that the
(equilibrium) distribution of field values is

P(χ) = Ce
− 8π2

3
V (χ)

χ4

Typical displacement: 〈χ2〉 ∼ H4
∗

m2

Relaxation time scale: N ∼ H2
∗

m2

1
Starobinsky & Yokoyama (9407016), cf. Markkanen, Rajantie, Stopyra, TT (1904.11917)
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Relaxation time

Image: Enqvist et al. (1205.5446)
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Evolution after inflation

At the end of inflation, there was a non-zero condensate of the
scalar field

The field had the energy density

ρend
χ (x) =

1
2

m2χ2(x)

This is a generic initial condition for non-thermal dark matter
models with scalar fields

Note that the energy density is a position-dependent quantity
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Scalar field is dark matter

Soon after the end of inflation, the field started to oscillate around
the minimum of its potential, acting as cold dark matter:

ρχ ∝ a−3

If the field did not decay, its present abundance is

Ωχh2 = Ωχh2 (χ∗,m)

The simplest possible dark matter model
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Scalar field sources dark matter

If the field did decay into stable particles, χ→ ψψ̄, their present
abundance is

Ωψh2 = Ωψh2
(
χ∗,m,mψ, Γχ→ψψ̄

)

Other sources (such as freeze-in2) can contribute to the final DM
abundance, too

2
Cf. a review paper by Bernal, Heikinheimo, TT, Tuominen, Vaskonen (1706.07442)
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Dark matter perturbations
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Adiabatic or isocurvature perturbations?

It was noted that the energy density of the field is
position-dependent

ρend
χ (x) =

1
2

m2χ2(x)

Do the perturbations overlap with those in radiation?

Are the DM perturbations adiabatic or isocurvature?
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Isocurvature perturbations

Isocurvature between CDM and radiation is defined as

S ≡ δρCDM

ρCDM
− 3

4
δργ
ργ

This quantity describes how much the CDM perturbations differ
from those in radiation
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DM isocurvature vs. observations

Non-observation of DM isocurvature places stringent constraints on this
type of scenarios
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DM isocurvature spectrum

The CMB constraints require (at k∗ = 0.05 Mpc−1)

PS(k∗) . 0.01Pζ(k∗)

The spectator field generates a spectrum

PS(k) = Aiso

(
k
k∗

)niso−1

where

Aiso = 4 (niso − 1) e−2N(k∗)(niso−1)

niso − 1 =
2
3

m2

H2
∗
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Simplest scenario vs. observations

0 1 ×108 2 ×108 3 ×108 4 ×108
0

5.0 ×107

1.0 ×108

1.5 ×108

2.0 ×108

2.5 ×108

3.0 ×108

3.5 ×108

H* /GeV

m
/G
eV

The constraints can be satisfied⇒ See more: 1905.01214
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Implications for observations
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Testability of the scenario

Dark matter isocurvature affects the evolution of curvature
perturbation

ζ ∼ ζinf +

(
t

teq

)
S

More structure at small scales!
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Matter power spectrum

Image: K. Boddy

Work in progress!
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Conclusions

Tommi Tenkanen Dark matter from scalar field fluctuations 9/4/2020 21 / 22



Conclusions

Inflation provides generic initial conditions for scalar fields

Such scalars can constitute all DM or source it

The scenario can be tested with observations of the large scale
structure
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