

Dark matter from scalar field fluctuations

Tommi Tenkanen

Johns Hopkins University

Talk based on PRL 123, 061302 (2019) (1905.01214) (+ 1811.02586 & 1904.11917)

Online Newton 1665 Seminar 9/4/2020

E-mail: ttenkan1@jhu.edu

Tommi Tenkanen

Cosmic inflation

Image: Planck/ESA

 Must explain the observed curvature perturbations (+ several fine-tuning problems) => Cosmic inflation

Cosmic inflation

Image: Planck/ESA

- Must explain the observed curvature perturbations (+ several fine-tuning problems) => Cosmic inflation
- Assume standard cosmology: inflation, reheating, hot Big Bang epoch

Scalar fields in de Sitter space

• Assume there is a scalar field χ with the Lagrangian

• Assume there is a scalar field χ with the Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \chi \partial_{\mu} \chi - \frac{1}{2} m^2 \chi^2$$

• Assume there is a scalar field χ with the Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \chi \partial_{\mu} \chi - \frac{1}{2} m^2 \chi^2$$

Assume the field is not the inflaton field but a spectator field

▶ If the field is light ($m < H_*$) it acquires fluctuations during inflation

Scalar fields in de Sitter space

▶ If the field is light ($m < H_*$) it acquires fluctuations during inflation

Scalar fields in de Sitter space

▶ If the field is light ($m < H_*$) it acquires fluctuations during inflation

The scalar field starts to perform random walk

Distribution of field values

Distribution of field values

What is the distribution of field values at the end of inflation?

Starobinsky & Yokoyama (9407016), cf. Markkanen, Rajantie, Stopyra, TT (1904.11917)

$$\boldsymbol{P}(\chi) = \boldsymbol{C} \boldsymbol{e}^{-\frac{8\pi^2}{3}\frac{V(\chi)}{\chi^4}}$$

Starobinsky & Yokoyama (9407016), cf. Markkanen, Rajantie, Stopyra, TT (1904.11917)

$$P(\chi) = C e^{-\frac{8\pi^2}{3}\frac{V(\chi)}{\chi^4}}$$

• Typical displacement: $\langle \chi^2 \rangle \sim \frac{H_*^4}{m^2}$

Starobinsky & Yokoyama (9407016), cf. Markkanen, Rajantie, Stopyra, TT (1904.11917)

$$P(\chi) = Ce^{-\frac{8\pi^2}{3}\frac{V(\chi)}{\chi^4}}$$

• Typical displacement:
$$\langle \chi^2 \rangle \sim \frac{H_*^4}{m^2}$$

• Relaxation time scale: $N \sim \frac{H_*^2}{m^2}$

¹ Starobinsky & Yokoyama (9407016), cf. Markkanen, Rajantie, Stopyra, TT (1904.11917)

Image: Enqvist et al. (1205.5446)

Dark matter from scalar field fluctuations

At the end of inflation, there was a non-zero condensate of the scalar field

- At the end of inflation, there was a non-zero condensate of the scalar field
- The field had the energy density

- At the end of inflation, there was a non-zero condensate of the scalar field
- The field had the energy density

$$\rho_{\chi}^{\mathrm{end}}(x) = \frac{1}{2}m^2\chi^2(x)$$

- At the end of inflation, there was a non-zero condensate of the scalar field
- The field had the energy density

$$\rho_{\chi}^{\rm end}(x) = \frac{1}{2}m^2\chi^2(x)$$

This is a generic initial condition for non-thermal dark matter models with scalar fields

- At the end of inflation, there was a non-zero condensate of the scalar field
- The field had the energy density

$$\rho_{\chi}^{\rm end}(x) = \frac{1}{2}m^2\chi^2(x)$$

- This is a generic initial condition for non-thermal dark matter models with scalar fields
- Note that the energy density is a position-dependent quantity

$$ho_\chi \propto a^{-3}$$

If the field did not decay, its present abundance is

$$ho_\chi \propto a^{-3}$$

If the field did not decay, its present abundance is

$$\Omega_{\chi}h^{2}=\Omega_{\chi}h^{2}\left(\chi_{*},m\right)$$

$$ho_\chi \propto a^{-3}$$

If the field did not decay, its present abundance is

$$\Omega_{\chi}h^{2}=\Omega_{\chi}h^{2}\left(\chi_{*},m\right)$$

The simplest possible dark matter model

▶ If the field did decay into stable particles, $\chi \rightarrow \psi \bar{\psi}$, their present abundance is

²Cf. a review paper by Bernal, Heikinheimo, TT, Tuominen, Vaskonen (1706.07442)

▶ If the field did decay into stable particles, $\chi \rightarrow \psi \bar{\psi}$, their present abundance is

$$\Omega_{\psi} h^2 = \Omega_{\psi} h^2 \left(\chi_*, m, m_{\psi}, \Gamma_{\chi o \psi ar{\psi}}
ight)$$

 Other sources (such as freeze-in²) can contribute to the final DM abundance, too

²Cf. a review paper by Bernal, Heikinheimo, TT, Tuominen, Vaskonen (1706.07442)

Dark matter perturbations

Adiabatic or isocurvature perturbations?

It was noted that the energy density of the field is position-dependent It was noted that the energy density of the field is position-dependent

$$\rho_{\chi}^{\mathrm{end}}(x) = \frac{1}{2}m^2\chi^2(x)$$

It was noted that the energy density of the field is position-dependent

$$\rho_{\chi}^{\mathrm{end}}(x) = \frac{1}{2}m^2\chi^2(x)$$

Do the perturbations overlap with those in radiation?

It was noted that the energy density of the field is position-dependent

$$\rho_{\chi}^{\mathrm{end}}(x) = \frac{1}{2}m^2\chi^2(x)$$

Do the perturbations overlap with those in radiation?

Are the DM perturbations adiabatic or isocurvature?

Isocurvature between CDM and radiation is defined as

Isocurvature between CDM and radiation is defined as

$$m{S}\equivrac{\delta
ho_{
m CDM}}{
ho_{
m CDM}}-rac{3}{4}rac{\delta
ho_{\gamma}}{
ho_{\gamma}}$$

Isocurvature between CDM and radiation is defined as

$$S \equiv rac{\delta
ho_{ ext{CDM}}}{
ho_{ ext{CDM}}} - rac{3}{4} rac{\delta
ho_{\gamma}}{
ho_{\gamma}}$$

This quantity describes how much the CDM perturbations differ from those in radiation

DM isocurvature vs. observations

DM isocurvature vs. observations

 Non-observation of DM isocurvature places stringent constraints on this type of scenarios

• The CMB constraints require (at $k_* = 0.05 Mpc^{-1}$)

• The CMB constraints require (at $k_* = 0.05 Mpc^{-1}$)

$\mathcal{P}_{\mathcal{S}}(\textit{k}_{*}) \lesssim 0.01 \mathcal{P}_{\zeta}(\textit{k}_{*})$

• The CMB constraints require (at $k_* = 0.05 Mpc^{-1}$)

$\mathcal{P}_{\mathcal{S}}(\textit{k}_{*}) \lesssim 0.01 \mathcal{P}_{\zeta}(\textit{k}_{*})$

The spectator field generates a spectrum

• The CMB constraints require (at $k_* = 0.05 Mpc^{-1}$)

$\mathcal{P}_{\mathcal{S}}(\textit{k}_{*}) \lesssim 0.01 \mathcal{P}_{\zeta}(\textit{k}_{*})$

The spectator field generates a spectrum

$$\mathcal{P}_{\mathcal{S}}(k) = \mathcal{A}_{\mathrm{iso}} \left(\frac{k}{k_*}\right)^{n_{\mathrm{iso}}-1}$$

• The CMB constraints require (at $k_* = 0.05 Mpc^{-1}$)

$\mathcal{P}_{\mathcal{S}}(\textit{k}_{*}) \lesssim 0.01 \mathcal{P}_{\zeta}(\textit{k}_{*})$

The spectator field generates a spectrum

$$\mathcal{P}_{\mathcal{S}}(k) = \mathcal{A}_{\mathrm{iso}} \left(\frac{k}{k_*}\right)^{n_{\mathrm{iso}}-1}$$

where

$$A_{\rm iso} = 4 (n_{\rm iso} - 1) e^{-2N(k_*)(n_{\rm iso} - 1)}$$

$$n_{\rm iso} - 1 = \frac{2}{3} \frac{m^2}{H_*^2}$$

Simplest scenario vs. observations

Simplest scenario vs. observations

▶ The constraints can be satisfied ⇒ See more: 1905.01214

	_	
lommi		(on on
топпп	теп	капен

9/4/2020 17 / 22

Implications for observations

$$\zeta \sim \zeta_{
m inf} + \left(rac{t}{t_{
m eq}}
ight) oldsymbol{\mathcal{S}}$$

$$\zeta \sim \zeta_{
m inf} + \left(rac{t}{t_{
m eq}}
ight) m{\mathcal{S}}$$

$$\zeta \sim \zeta_{
m inf} + \left(rac{t}{t_{
m eq}}
ight) m{\mathcal{S}}$$

More structure at small scales!

Matter power spectrum

Image: K. Boddy

Matter power spectrum

Image: K. Boddy

Work in progress!

Conclusions

Inflation provides generic initial conditions for scalar fields

- Inflation provides generic initial conditions for scalar fields
- Such scalars can constitute all DM or source it

- Inflation provides generic initial conditions for scalar fields
- Such scalars can constitute all DM or source it
- The scenario can be tested with observations of the large scale structure