PAUL SCHERRER INSTITUT

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Andreas Crivellin

Theory Group of the Laboratory for Particle Physics, PSI & University of Zurich

Anomalous Magnetic Moments in and Beyond the Standard Model

Pisa (remote), 20.04.2020

Outline

- Status of the Anomalous Magnetic Moment of the Muon
- Hadronic Vacuum polarization and Electro Weak Fit
- Explaining the anomalous magnetic moment of the muon with new physics
- $\bullet a_{\mu}$ and consequences for future measurements
- Correlations with the electron AMM and implications for the muon EDM
- Further Flavour anomalies and future prospects

Muon Anomalous Magnetic Moment

- Single measurement from BNL $a_{\mu} \approx 116592089(63) \times 10^{-11}$
- New Fermilab experiment aims at an reduction of the error by a factor 4
- Planned J-PARK experiment with completely different systematics
- SM prediction had three components

SM Theory Prediction: EW and QED

- QED 5-loop contribution T. Aoyama, T. Kinoshita, M. Nio, PRD, 2018 $a_{\mu}(QED) \approx 116584718.951(0.080) \times 10^{-11}$
- EW 2-loop effect

C. Gnendiger, D. Stöckinger, H. Stöckinger-Kim, PRD (2013)

 $a_{\mu}(EW) \approx 153.6(1.0) \times 10^{-11}$

QED and EW well under control

SM Theory: Hadronic Effects

Leading uncertainties from hadronic effects

Page 6

Hadronic Vacuum Polarization

• Dispersive approach

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} ds \, \frac{\hat{K}(s)}{s^2} R_{\text{had}}(s), \ s_{\text{thr}} = m_{\pi^0}^2$$

$$R_{\rm had}(s) = \frac{3s}{4\pi\alpha^2} \sigma(e^+e^- \to {\rm hadrons})$$

$$\Delta \alpha_{\rm had}^{(5)} \Big|_{e^+ e^-} = 276.1(1.1) \times 10^{-4}$$

New BMWc lattice result

$$\Delta \alpha_{\text{had}}^{(5)} \Big|_{BMWc}^{\leq M} = 283.8(1.3) \times 10^{-4},$$

$$\Delta \alpha_{\text{had}}^{(5)} \Big|_{BMWc}^{\leq 11.2 GeV} = 280.3(1.3) \times 10^{-4}$$

$$\Delta \alpha_{\text{had}}^{(5)} \Big|_{BMWc}^{\leq 1.94} = 277.9(1.1) \times 10^{-4},$$

M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, EPJC (2020) A. Keshavarzi, D. Nomura, T. Teubner, PRD (2020)

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{\alpha M_Z^2}{3\pi} \int_{s_{\rm thr}}^{\infty} ds \, \frac{R_{\rm had}(s)}{s(M_Z^2 - s)}$$

(energy dependence not know)

BMWc result in tension with e^+e^- ; would solve g-2

S. Borsanyi et al., [arXiv:2002.12347 [hep-lat]].

HVP enters EW fit

BMWc result leads to significant tension

Tensions in the EW fit

Tensions call for (different) NP

Explaining the AMM of the muon

Dipoles in the EFT

- Effective Hamiltonian $\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \, \bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$
- Anomalous magnetic moment

$$a_{\ell_i} = -\frac{4m_{\ell_i}}{e} \operatorname{Re} c_R^{\ell_i \ell_i}$$

• Electric Dipole moment

$$d_{\ell_i} = -2 \operatorname{Im} c_R^{\ell_i \ell_i}$$

Radiative Lepton decays

$$Br[\mu \to e\gamma] = \frac{m_{\mu}^{3}}{4\pi \Gamma_{\mu}} \left(|c_{R}^{e\mu}|^{2} + |c_{R}^{\mu e}|^{2} \right)$$

Processes intrinsically connected

Explaining the Muon AMM

 Effect of the order of the EW-SM contribution needed

enhancement necessary

- Light particles
 - Neutral scalars
 - Neutral vector (Z' Dark Photon)
 - ALP (axion like particle)

Huge literature

 Chiral enhancement: Chirality flip does not come from the muon mass but rather from a NP mass inside the loop

Light particles or/and chiral enhancement

 a_{μ} : MSSM

 $\begin{array}{c}
\widetilde{\mu}_{L} \\
\widetilde{\mu}_{L} \\
\widetilde{\mu}_{R} \\
\widetilde{B} \\
\widetilde{H}_{D}
\end{array}$

(d)

e.g. D. Stockinger, hep-ph/0609168

tan(ß) enhanced slepton and sneutrino loops

Leptoquarks in a_{μ}

Chirally enhanced effects via top-loops

 $Z \rightarrow \mu \mu$ at future colliders

2HDMs

Unavoidable constraints from $h \rightarrow \tau \mu$

Future Implications of a_u

Correlations with the AMM of the electron

AC, M. Hoferichter, P. Schmidt-Wellenburg, arXiv:1807.11484

See also

...

H. Davoudiasl, W. J. Marciano, arXiv:1806.10252

Jia Liu, Carlos E.M. Wagner, Xiao-Ping Wang, arXiv:1810.11028

- AMM usually used to determine $\boldsymbol{\alpha}$
- With *now* best determination of α from Cs atoms $a_e^{\rm SM}|_{\alpha_{\rm Cs}} = 1,159,652,181.61(23) \times 10^{-12}$
- Compared to the electron AMM measurement

$$\Delta a_e = a_e^{\exp} - a_e^{\rm SM} = -0.88(36) \times 10^{-12}$$

• Normalized to the lepton mass

$$-3 \le \frac{\Delta a_{\mu}}{m_{\mu}} \left/ \frac{\Delta a_{e}}{m_{e}} \le -130 \text{ or } -0.006 \le \frac{\Delta a_{\mu}}{m_{\mu}^{2}} \right/ \frac{\Delta a_{e}}{m_{e}^{2}} \le -0.26$$

2.5 σ deviation with opposite sign than a_{μ}

Common explanation of a_{μ} and a_{e}

- Opposite sign: no single light mediator
- No Minimal Flavour Violation:

$$\Delta a_{\mu} / \Delta a_{e} \neq m_{\mu}^{2} / m_{e}^{2}$$

generic flavour structure

• New physics with common couplings to μ and e $Br[\mu \to e\gamma] = \frac{\alpha m_{\mu}^2}{16m_e \Gamma_{\mu}} |\Delta a_{\mu} \Delta a_e| \sim 8 \times 10^{-5}$ 8 orders of magnitude too large

Muon and electron sector must be decoupled

Model with new vector-like leptons

Works for a_e but tension with a_{μ}

Future experimental sensitivity

Dedicated experiment needed?

Implications for Muon EDM

Andreas Crivellin

Future directions

Andreas Crivellin

Backup

a_{μ} and further hints for New Physics $\overline{}$

Observable	Reference	Measurement	Posterior (1)	Pull (1)	Posterior (2)	Pull (2)	Posterior (3)	Pull (3)
$\alpha_s(M_Z)$	[1]	0.1181(11)	0.1181(10)	0.003	0.1181(10)	0.004	0.1181(10)	0.02
$M_Z [{ m GeV}]$	[2]	91.1875(21)	91.1883(20)	-0.27	91.1877(21)	-0.05	91.1891(20)	-0.55
$m_t [{ m GeV}]$	[3-5]	172.80(40)	172.95(39)	-0.27	172.85(39)	-0.09	173.09(39)	0.51
$M_H [\text{GeV}]$	[6, 7]	125.16(13)	125.16(13)	0.01	125.16(13)	0.01	125.16(13)	0.02
M_W [GeV]	[1]	80.379(12)	80.363(4)	1.25	80.372(6)	0.56	80.353(4)	2.10
Γ_W [GeV]	[1]	2.085(42)	2.088(1)	-0.09	2.089(1)	-0.10	2.088(1)	-0.07
$BR(W \to \ell \nu)$	[1]	0.1086(9)	0.10838(2)	0.25	0.10838(1)	0.25	0.10838(1)	0.25
$BR(W \rightarrow had)$	[1]	0.6741(27)	0.6749(1)	-0.28	0.6749(1)	-0.28	0.6749(1)	-0.28
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	[2]	0.2324(12)	0.2316(4)	0.63	0.2315(1)	0.77	0.2319(1)	0.44
$\sin^2 \theta_{\rm eff(Had, coll.)}^{\rm lept}$	[8, 9]	0.23143(27)	0.2316(4)	-0.78	0.2315(1)	-0.14	0.2319(1)	-1.62
P_{τ}^{pol}	[2]	0.1465(33)	0.1461(3)	0.13	0.1475(8)	-0.28	0.1443(3)	0.68
A_ℓ	[2]	0.1513(21)	0.1461(3)	2.47	0.1475(8)	1.71	0.1443(3)	3.31
$\Gamma_Z [\text{GeV}]$	[2]	2.4952(23)	2.4947(6)	0.22	2.4951(6)	0.05	2.4942(6)	0.43
σ_h^0 [nb]	[2]	41.541(37)	41.485(6)	1.50	41.485(6)	1.51	41.485(6)	1.50
R_{ℓ}^{0}	[2]	20.767(35)	20.747(7)	0.79	20.750(7)	0.66	20.743(7)	0.95
$A_{ m FB}^{0,\ell}$	[2]	0.0171(10)	0.0160(1)	1.10	0.0163(2)	0.78	0.0156(1)	1.49
R_b^0	[2]	0.21629(66)	0.21582(1)	0.71	0.21582(1)	0.71	0.21583(1)	0.70
R_c^0	[2]	0.1721(30)	0.17219(2)	-0.03	0.17220(2)	-0.03	0.17218(2)	-0.03
$A^{0,b}_{ m FB}$	[2]	0.0992(16)	0.1024(2)	-1.97	0.1034(6)	-2.46	0.1011(2)	-1.17
$A_{\mathrm{FB}}^{0,\overline{c}}$	[2]	0.0707(35)	0.0731(2)	-0.69	0.0739(4)	-0.90	0.0721(2)	-0.41
A_b	[2]	0.923(20)	0.93456(3)	-0.58	0.9347(1)	-0.58	0.93442(3)	-0.57
A_c	[2]	0.670(27)	0.6675(1)	0.09	0.6681(4)	0.07	0.6667(2)	0.12