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Disclaimer

Warning 

The content of this talk is based on arXiv:2002:00459

(P. Belli, talk at CNNP2020)

By connecting to this meeting you declare to be aware of the 

content that is going to be presented, and implicitly accept any 

potential consequence of this action at your own risk.



Status of Dark Matter experiments
The year is 2020 AD.


WIMP Dark Matter is 
entirely ruled out by 
Direct Detection 
experiments.


Entirely? Well, not 
quite entirely…


One small 
indomitable Dark 
Matter experiment 
still holds out against 
the invaders.


And life is not easy 
for the theorists who 
garrison the fortified 
camps nearby…



Dark Matter direct detection
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Dark Matter experiment: status

Age of discoveries passed for matter, not yet arrived for DM.
Collider: nothing at LHC, future?
Indirect detection: astro bcks reached, no promising anomaly, progress di�cult.
Direct detection: fast progress, nothing found⇤, 102.6 above ⌫ background:

● ● ●
● ●

●●

● ●●
●●

●●
●
●
●●
●

●●●●●
●

●●
● ● ●

●●●

●●

���� ���� ���� ���� ���� ���� ���� ����

��-��

��-��

��-��

��-��

��-��

��-��

��-�� ��������� σ ≈ �/�����

������� σ ≈ α���
� /��

�

������ σ ≈ α���
� /��

�

����� σ ≈ α���
� /(�π)���

�

����������� ν ����������

����

σ
��
��
��

�
��
��

�
�
≈
�
�

������� �� ������ �� ��������

�
�
�
� ��

�

��
�
�

��
��
��

�
��
��
��

* But DAMA keeps observing signal...

✦ DM scatterings are very rare events


✦ Not easy to fully understand 
backgrounds at low recoil energy


➡ most experiments aim at reducing 
backgrounds as much as possible


No evidence for DM found until nowAtmospheric neutrino background

= (mass)⇥ �0F (q)2

2µ2mDM
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Rate for contact interactions:



Dark Matter direct detection: annual modulation

June 2nd vsun

fMW(v) ⇡ exp

�
�v2/v20

�
⇥(vesc � v)f�(v, t) = fMW(v + v� + v�(t)),

DM velocity distribution in Earth’s rest frame:
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cos � ⇡ 0.49, t0 ⇡ June, 2
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is modulated, with a maximum 
around June, 2nd

v� ⇡ 220 km/s

v
orb

⇡ 30 km/s
) �v/v ⇡ 5%

A small effect! Looking for

the modulation is hard.
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The DAMA results
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DAMA/NaI DAMA/LIBRA Phase-2DAMA/LIBRA Phase-1

2-6 keVee energy interval

➡ Most recent results from 2018: 12.9 σ evidence for modulation


Amplitude = (0.0103 ± 0.0008) c.p.d./kg/keVee 

Period = (0.9987 ± 0.0008) years 

Phase = May 26th ± 5 days


DAMA collaboration, ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА 19 (2018) 4.

DAMA observes a modulation in single-hit scintillation events in NaI crystals



✦ Many experiments rule out simple DM interpretations of the DAMA signal


➡ However, as long as no convincing explanation is found, the DAMA result 
remains an open issue


➡ DM physics might be more complex and reconcile the results (unlikely…)


✦ Several explanations in terms of oscillating backgrounds have been proposed


➡ Amplitude, time-dependence, and event distribution in the detector array 
are difficult to explain with modulated backgrounds,


➡ Peak of the modulation close to June 2nd is a strong argument in favor of 
the DM interpretation.


✦ Experimentalists have been killing models since decades. I was hoping to 
take my revenge trying to kill an experiment…    🙃

Motivations

0912.2983, 1006.5255, 1101.5205, 1102.0815, …

see e.g. 0804.2741



The DAMA residuals
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✦ DAMA never published the event rate as a function of time


✦ Only the residuals were published, after subtracting the yearly average:

and the detectors have always been in contact only with an atmosphere of HP Nitrogen
[41, 64]. Moreover, the data taking of each annual cycle has been started before the
expected minimum of the signal rate (which is roughly around ≃ 2nd December) and
concluded after the expected maximum (which is roughly around ≃ 2nd June).

As mentioned, several operational parameters have been regularly acquired with
the production data, such as the operating temperature, the HP Nitrogen flux into
the inner Cu box housing the detectors, the pressure of the HP Nitrogen atmosphere
in the inner Cu box, the environmental Radon from which however the detectors are
excluded (see above and later) and the hardware rate (including the noise) above
single photoelectron threshold. Computer controlled processes immediately inform
the operator during production runs in case one of the parameters goes outside the
stringent allowed interval of stability values. In addition, the recorded parameters
values allow a deep analysis and control of possible systematics as performed e.g. in
ref. [64] and discussed in the following.

6.1 The evidence

A model independent investigation of the annual modulation signature has been re-
alized by exploiting the time behaviour of the residual rates of the single hit events
in the lowest energy regions over the seven annual cycles (total exposure: 107731 kg
· day), as previously performed in refs. [63, 64]. These residual rates are calculated
from the measured event rate after subtracting the constant part (the weighted mean
of the residuals must obviously be zero over each period): < rijk − flatjk >jk. There
rijk is the rate in the considered i-th time interval for the j-th detector in the k-th
considered energy bin, while flatjk is the rate of the j-th detector in the k-th energy
bin averaged over the cycles. The average is made on all the detectors (j index) and
on all the energy bins in the considered energy interval.

This model independent approach on the data of the seven annual cycles offers an
immediate evidence of the presence of an annual modulation of the rate of the single
hit events in the lowest energy region as shown in Fig. 10, where the time behaviours
of the (2–4), (2–5) and (2–6) keV single hit residual rates are depicted. They refer to
4549, 14962, 22455, 16020, 15911, 16608, 17226 kg · day exposures, respectively for
the DAMA/NaI-1 to -7 running periods 9.

In fact, the data favour the presence of a modulated cosine-like behaviour (A·
cosω(t − t0)) at 6.3 σ C.L. 10 and their fit for the (2–6) keV larger statistics energy
interval offers modulation amplitude equal to (0.0200 ± 0.0032) cpd/kg/keV, t0 =
(140 ± 22) days and T = 2π

ω = (1.00 ± 0.01) year, all parameters kept free in the fit.

9In particular, the DAMA/NaI-5 data have been collected from August 1999 to end of July 2000
(statistics of 15911 kg · day); then, the DAQ and the electronics have been fully substituted (see
§4.1). Afterwards, the DAMA/NaI-6 data have been collected from November 2000 to end of July
2001 (statistics of 16608 kg · day), while the DAMA/NaI-7 data have been collected from August 2001
to July 2002 (statistics of 17226 kg · day), when the data taking with this set-up has been concluded.

10It is worth to note that the confidence level given in ref. [63] was instead referred to the particular
model framework considered there in the quest for a candidate. Here the confidence level refers to
the model independent effect itself and is calculated on the basis of the residual rate in the (2–6) keV
energy interval. Applying the same procedure to the residuals given in ref. [63], one gets 4.6 σ C.L.
which is in agreement with the presently quoted value once scaling it by the square root of the ratio
of the relative exposures.

28

1805.10486 and other DAMA papers

NB: residuals are very useful at low statistics, when one needs to combine 
data from different cycles to get a significant signal!



Annual modulation vs secular variation

Signal on top of a background rate


✦ If R0 = C is constant, 

the “DAMA method” correctly subtracts the background


✦ If R0 is not constant, a bias is introduced. 

Consider R0(t) = C + B t:  the residuals in each interval ∆ are B(t - t0)


ulation peaked in June. As a result, a slow time-dependence of the total rate, even if

not oscillating, becomes a possible source of bias. For example, the DAMA modulated

amplitude could be generated by a growth of the rate of several percent on a decennial

time-scale.

This paper is organized as follows: in section 2 we describe the general idea, and we

show how the amplitude and phase of a modulated signal are related to the time vari-

ation of the total rate. We apply this to a practical example. In section 3 we briefly

present the DAMA analysis. A toy Monte Carlo simulation is performed in 3.1, showing

that a linearly growing rate produces a sawtooth signal that can appear as a cosine, up

to statistical errors. In section 4 we consider the DAMA data. We study the detailed

time-dependence of the DAMA residuals in section 4.1, finding that both a cosine and a

sawtooth provide acceptable fits to the data, with the cosine interpretation being some-

what favoured. This extreme possibility is consistent with corollary DAMA studies [5],

which include a Fourier analysis. In section 4.2 we infer the energy dependence of the

secular variation. We discuss some possible time-dependent backgrounds in section 4.3.

Conclusions are given in section 5.

2 Annual modulation from secular variation

In this section we discuss, from a general point of view, how an apparently periodic signal

can be mimicked by a time-dependent total rate without any modulation. Let us consider

a total rate R(t) that contains an oscillating signal on top of a slowly varying background

R
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If the rate could be measured with arbitrary precision, the modulation would be straight-

forwardly obtained by directly fitting R(t) to the data. The phase of its peaks would

di↵er from � in the presence of R
0

(t).

If instead statistical uncertainties are so large that a single annual period is not clearly

visible, one needs to combine data of multiple periods. Then, a slow time-dependence of

the background R
0

(t) becomes more dangerous. For constant background, R
0

(t) ⌘ C, one

can consider the average of the rate over any desired time interval �, and subtract this

quantity from R(t). If � is a multiple of the period T the sinusoidal signal averages to

zero, and this procedure therefore isolates the signal from the background,
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As discussed in section 3, theDAMA collaboration followed a procedure along these lines.

However, when R
0

(t) is not constant, this procedure introduces an artificial modulation

with period �. As an example, we illustrate our point by considering the simple case

3

R(t) = R0(t) +A cos
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Annual modulation vs secular variation

Signal on top of a background rate


✦ If R0 = C is constant, 

the “DAMA method” correctly subtracts the background


✦ If R0 is not constant, a bias is introduced. 

Consider R0(t) = C + B t:  the residuals in each interval ∆ are B(t - t0)


 

With experimental errors, it can be fitted with a sinusoid

ulation peaked in June. As a result, a slow time-dependence of the total rate, even if

not oscillating, becomes a possible source of bias. For example, the DAMA modulated

amplitude could be generated by a growth of the rate of several percent on a decennial

time-scale.
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Annual modulation vs secular variation

Fitting a function with a sinusoid is equivalent to taking its Fourier series:


✦ A linearly varying rate R0(t) = C + B t gives an apparent modulation with


The minimum (if B > 0) or maximum (if B < 0) is a quarter of a period 
after the start of the cycle (3 months).

B(t� t0) =
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Annual modulation vs secular variation

Fitting a function with a sinusoid is equivalent to taking its Fourier series:


✦ A linearly varying rate R0(t) = C + B t gives an apparent modulation with


The minimum (if B > 0) or maximum (if B < 0) is a quarter of a period 
after the start of the cycle (3 months).


✦ If a true modulation is present, the extraction of the signal is biased
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where the rate varies linearly in time,1

R
0

(t) = C+Bt . (3)

Subtracting the average of the rate in an interval � centred on t
0

yields the residual

S
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that becomes a sawtooth wave with period � and amplitude B�/2 if the procedure is

repeated over several data-taking intervals of equal length �.

The sawtooth can be mistaken for a sinusoid with the same period if its amplitude is

small enough as compared with the experimental errors. Indeed, fitting a generic periodic

function with a sinusoid is equivalent to picking up the first term of its Fourier series.

The Fourier series of eq. (4) in the time interval � is

S
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which can be matched to the form of eq. (1) as
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T
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The best-fit sinusoidal wave has an extremum a quarter of period after the beginning of

the sawtooth. For a decreasing background (B < 0) this extremum at t
peak

= T/4 is a

maximum; for an increasing background (B > 0) it is a minimum, and the maximum is

half a period later, at t
peak

= 3T/4.

The procedure to extract the modulation from the total rate has introduced a bias —

the length � of the time interval over which the background subtraction is periodically

applied — and a nonzero modulation with period � has been generated from a non-

periodic rate. In the presence of a modulated signal as in eq. (1), its amplitude A and

phase � will be modified by the fitting procedure. In the simple case where the duration

of the cycles is taken equal to the period of the signal one has

A2
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= A2+
B2T 2

⇡2

+2
ABT

⇡
sin

⇣
��2⇡t
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T

⌘
, tan�
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0

/T )

A cos�� (BT/⇡) sin(2⇡t
0

/T )
. (7)

2.1 Extracting a modulation from data: a bibliometric example

In order to work out a practical example we consider real data from bibliometrics. We

consider all publications in high-energy physics (excluding astro-ph) since 1995, and we

compute the bi-monthly averages of their number of references N
ref

(t), and of the number

of citations N
cit

(t) they received up to now, as reported in the InSpire database [34]. The

data are shown in the left panel of fig. 1 as a function of publication time t. The average

1This functional form of the total rate was dubbed ‘relaxion’ in [33].
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Consider the papers published in HEP after 1995 (from inspirehep.net)

(An example without Dark Matter)

✦ References increase with time 
because the field expands.


✦ Citations decrease with time 
because more recent papers 
have not yet been cited.

Do you see a modulation?
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Consider the papers published in HEP after 1995 (from inspirehep.net)

(An example without Dark Matter)
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✦ References increase with time 
because the field expands.


✦ Citations decrease with time 
because more recent papers 
have not yet been cited.

Need to compute residuals and combine 
the events from different years


✦ Lighter colors: subtracting yearly averages 
the amplitude and phase get biased


✦ Darker colors: subtracting a smooth 
function one gets the correct result: both 
quantities peak in spring



What about Dark Matter…?

✦ COSINE-100 and ANAIS: 

two experiments aiming at a 

verification of the DAMA signal 

(also based on NaI crystals). 

They publish their total rates: 

they vary with time 

✦ DAMA has published the total rate, 

averaged over the entire 

data-taking periods, at two 

different points in time: 

it changes…  
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COSINE-100, 1903.10098

data from 1805.10486 and 0804.2741



The DAMA cycles

All the DAMA cycles last 
about one year, and start 
around September:
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Table 1: Details about the annual cycles of DAMA/LIBRA–phase2. The mean value
of the squared cosine is α = ⟨cos2ω(t − t0)⟩ and the mean value of the cosine is
β = ⟨cosω(t − t0)⟩ (the averages are taken over the live time of the data taking and
t0 = 152.5 day, i.e. June 2nd); thus, the variance of the cosine, (α− β2), is ≃ 0.5 for a
detector being operational evenly throughout the year.

DAMA/LIBRA–phase2 Period Mass (kg) Exposure (kg×day) (α− β2)
annual cycle

1 Dec. 23, 2010 – Sept. 9, 2011 commissioning of phase2

2 Nov. 2, 2011 – Sept. 11, 2012 242.5 62917 0.519

3 Oct. 8, 2012 – Sept. 2, 2013 242.5 60586 0.534

4 Sept. 8, 2013 – Sept. 1, 2014 242.5 73792 0.479

5 Sept. 1, 2014 – Sept. 9, 2015 242.5 71180 0.486

6 Sept. 10, 2015 – Aug. 24, 2016 242.5 67527 0.522

7 Sept. 7, 2016 – Sept. 25, 2017 242.5 75135 0.480

DAMA/LIBRA–phase2 Nov. 2, 2011 – Sept. 25, 2017 411137 ≃ 1.13 ton×yr 0.502
DAMA/NaI + DAMA/LIBRA–phase1 + DAMA/LIBRA–phase2: 2.46 ton×yr

throughout the year). Thus, this period cannot be used for the annual modulation
studies; however, it has been used for other purposes [6, 13]. Therefore, as shown in
Table 1 the considered annual cycles of DAMA/LIBRA–phase2 are six (exposure of
1.13 ton×yr). The cumulative exposure, also considering the former DAMA/NaI and
DAMA/LIBRA–phase1, is 2.46 ton×yr.

The total number of events collected for the energy calibrations during
DAMA/LIBRA–phase2 is about 1.3 × 108, while about 3.4 × 106 events/keV have
been collected for the evaluation of the acceptance window efficiency for noise rejec-
tion near the software energy threshold [1, 6].

As it can be inferred from Table 1, the duty cycle of the experiment is high, ranging
between 76% and 85%. The routine calibrations and, in particular, the data collection
for the acceptance windows efficiency mainly affect it.

Finally, Fig. 1 shows the low energy distribution of the DAMA/LIBRA–phase2
single-hit scintillation events. It is worth noting that, while DAMA/LIBRA–phase1
showed a very good linearity between the calibration with the 59.5 keV line of 241Am
and the tagged 3.2 keV line of 40K [1], in DAMA/LIBRA–phase2 a slight non-linearity
is observed (it gives a shift of about 0.2 keV at the software energy threshold and
vanishes above 15 keV). This is taken into account in Fig. 1 and following analyses 1.

1Similar non-linear effects cannot be highlighted in experiments where the energy scale is extrap-
olated from calibrations to much higher energies or estimated through MonteCarlo modeling.

5

A rate that grows by a few percent each year, will generate an apparent 
modulation with period of 1 year and peaked at the beginning of June!

18
05

.1
04

86

Sept. - 3 months 
= June



We perform a simulation with a setup similar to the DAMA/LIBRA detector.


✦ Events simulated for each day following a Poisson distribution with mean

Monte Carlo simulation
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N(t) = e�ciency ⇥mass⇥�E ⇥R0(t), R0(t) = C + Bt

2-6 keV242.5 kg of NaI60% - 80% B = 0.01 · ⇡ cpd/kg/keVee/yr

𝒞 fixed by average rate

Phase 1: 1.03 cpd/kg/keVee

Phase 2: 0.63 cpd/kg/keVee



Monte Carlo simulation

���� ���� ���� ���� ���� ���� ����
-����

-����

����

����

����

����

��
���
��
��
��
�
[�
��

/�
�/
��
�
]

� � � � � � � � � � � � �

χ� /������ = ���/���
��� = ������ ± ������

��������� ����� ����� ������

✦ Consider the same cycles as DAMA (which do not last exactly one year)


✦ Calculate the residuals subtracting the averages over each cycle k: 
the events follow an irregular sawtooth


✦ Fitting the residuals with a cosine of period T = 1 yr, peaked on June 2nd:

Figure 3. Residuals obtained from the simulated data of fig. 2 (black points) and computed

within each data-taking cycle (vertical lines) following the DAMA procedure. The red curve

shows the best fit to the simulated residuals with a DM cosine signal with a period of one year

and peaked on June, 2nd. The zero-signal hypothesis is excluded with a significance of 12.7�

despite that no modulation was assumed in the simulated data.

section 2 arises because the DAMA data-taking cycles have slightly irregular durations.

The start and end dates of the 7 cycles of Phase 1 and the 6 cycles of Phase 2 can be

found in table 1 of [4] and [5] respectively. Subtracting the average rate in the k-th cycle

that lasts �Tk = tf,k � ti,k the residuals of eq. (9) follow the irregular sawtooth

S(t) = ⇣M�E S
0

(t) with S
0

(t) = B

✓
t�

ti,k + tf,k
2

◆
for ti,k < t < tf,k , (10)

which is no longer a perfectly periodic function. We collect the residuals in 102 time

bins of approximately 1.5 months each, adopting the same binning as the one used in

the DAMA analysis. Fig. 3 illustrates the binned residuals expressed in cpd/kg/keVee.

The errors are of the same order of the errors of the DAMA residuals in the (2– 6) keVee

energy window.

This procedure results in something that looks like a cosine annual modulation. Un-

like a true sinusoidal modulation, discontinuities are present between the various cycles.

However, the binning procedure can partially wash out these discontinuities: if a time bin

falls in two di↵erent cycles, as sometimes happens for the DAMA binning, the sawtooth

will approximately average to zero over the bin, and the residual number of events in the

bin will be small. Averaging the rate over 25 crystals with di↵erent e�ciencies and duty

cycles could also have an impact in this respect.

The consistency of the residual rate with a DM signal can be quantified by fitting the

residual rate with a cosine with a period T = 1 year, and peaked at t
peak

= 152.5 days

which corresponds to June, 2nd. For our simulated Monte Carlo sample, the fit results in a

cosine amplitude A = (0.0094± 0.0007) cpd/kg/keVee, consistent with the injected value

of 0.01 cpd/kg/keVee. The goodness of the fit is given by �2 = 141 for 101 degrees of

freedom. The cosine signal is preferred over the zero-signal hypothesis at 12.7 �, despite

that no cosine modulation was present in the simulated data.

If instead the residuals are recomputed by subtracting the average rate as fitted to a

8

12.7 σ evidence for non-zero modulationA = (0.0094± 0.0007) cpd/kg/keVee



The DAMA data

✦ Time dependence of the total rate is not public  ☹  
we can only look at the residuals:


✦ Fit to irregular sawtooth following the DAMA cycles: 
 
 
 
 
Modulation could be due by a yearly few percent growth of the rate.


✦ A cosine (over-)fits better, especially for the more recent Phase-2 data.

�2/dof = 137/137

Figure 7. Left: Fit of the cosine amplitude and its phase to DAMA residuals, allowing for a

sawtooth component (colored regions) or setting it to zero (gray regions). Left: combined fit in

the (2– 6) keVee energy window. Right: fit of DAMA/LIBRA Phase 2 residuals in the (1– 3)

keVee energy window.

sawtooth, the best-fit values of the B coe�cients are

B
NaI

= (0.060± 0.009) cpd/kg/keVee/yr , (11a)

B
LIBRA

= (0.022± 0.003) cpd/kg/keVee/yr , (11b)

for DAMA/NaI and DAMA/LIBRA, respectively, which correspond to a yearly growth

of the total rate of a few percent. Allowing for di↵erent coe�cients for Phase 1 and

Phase 2, and even for each individual cycle, gives similar results.

The DAMA collaboration also reports residual rates in di↵erent energy windows. We

perform a fit in all the energy intervals of DAMA/NaI, DAMA/LIBRA Phase 1 and

Phase 2, and we find that both the cosine and the sawtooth give acceptable fits to the

data. The two theoretical hypotheses result in similar �2/d.o.f. in all cases, except for

the higher energy bin of DAMA/LIBRA Phase 2 where a cosine is favoured. We also

provide combined results with a single B for the three phases in the (2– 6) keVee energy

interval where this is possible. The results of all our fits are summarized in table 1.

Keeping in mind that both the cosine and sawtooth provide acceptable fits to the data,

we compare the two hypotheses by means of a likelihood ratio test. Indeed, when fitting

data with many degrees of freedom, a likelihood-ratio test is a more powerful statistical

indicator than the �2 test. The two tests answer di↵erent questions: the �2 compares the

considered model to a generic model, such that all statistical fluctuations contribute. On

the other hand, the ��2 compares two specific models such that only those statistical

fluctuations that discriminate among the two models contribute. We perform a ��2 fit

of the data to a generic superposition of a sawtooth plus a cosine. We fix the period of
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The DAMA data

Fitted Fit to a cosine modulation Fit to a secular variation

data A [cpd/kg/keVee] �2

cos

/d.o.f. B [cpd/kg/keVee/yr] �2

saw

/d.o.f.

DAMA/NaI

(2-4) keVee 0.0214± 0.0046 36.3/36 0.0783± 0.0141 26.9/36

(2-5) keVee 0.0200± 0.0037 24.1/36 0.0605± 0.0113 24.7/36

(2-6) keVee 0.0178± 0.0031 36.9/36 0.0602± 0.0094 29.6/36

LIBRA Phase I

(2-4) keVee 0.0164± 0.0022 53.5/49 0.0452± 0.0059 51.9/49

(2-5) keVee 0.0120± 0.0016 42.8/49 0.0302± 0.0044 50.5/49

(2-6) keVee 0.0095± 0.0013 30.0/49 0.0249± 0.0035 33.6/49

LIBRA Phase II

(1-3) keVee 0.0182± 0.0023 61.2/51 0.0475± 0.0062 67.1/51

(1-6) keVee 0.0103± 0.0011 52.0/51 0.0230± 0.0029 83.7/51

(2-6) keVee 0.0093± 0.0011 44.8/51 0.0197± 0.0030 72.9/51

LIBRA I and II

(2-6) keVee 0.0094± 0.0008 74.8/101 0.0219± 0.0026 107.7/101

DAMA combined

(2-6) keVee 0.0100± 0.0008 118.8/138 0.0240± 0.0022 152.9/138

Table 1. Best-fit values of the DM cosine amplitude A and the sawtooth coe�cient B obtained

by fitting the DAMA residuals in di↵erent energy intervals, together with the corresponding

�2/d.o.f. Our fits of the cosine amplitudes agree with those reported by DAMA/LIBRA.

the cosine to one year, and its peak to June 2nd, as predicted for a DM-induced annual

modulation signal, so that the only free parameter is the amplitude A. The sawtooth also

has one free parameter, the slope B, since its phase and duration are fixed by the DAMA

analysis choices. Fig. 6 shows the results of the fit as 68%, 95% and 99.7% allowed contours

of A and B. On the left we consider the (2– 6) keVee energy interval for the three phases

of DAMA, while on the right we fit data in the lower energy window ((2 – 4) keVee for

both DAMA/NaI and DAMA/LIBRA Phase 1, and (1– 3) keVee for DAMA/LIBRA

Phase 2). In the (2 – 6) keVee interval the earlier DAMA/NaI data resemble more a

sawtooth, while the more precise later Phase 2 data favour a cosine-dominated fit. Data

in the lower energy interval are fitted equally well by both possibilities, a cosine or a

secular variation.

Finally, we consider the cosine phase as an additional free parameter, still keeping the

period fixed to one year, and quantify how much a possible sawtooth component relaxes

the determination of the cosine amplitude and phase. In the left panel of fig. 7 we show

the regions of A and t
peak

preferred at 68%, 95% and 99.7% C.L. by the combined DAMA

data-set in the (2– 6) keVee energy interval, both allowing for a free sawtooth component
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We performed fits for all energy bins available in the various phases



✦ Both models fit the data reasonably well. To discriminate between them we 
perform a likelihood-ratio test,  ℒ /ℒ0 = exp(-∆χ2/2)


✦ In general, the sawtooth is allowed in the low energy bins where the signal 
is larger, and for Phase-1 & NaI.


✦ A cosine is favored by more recent Phase-2 data in the 2-6 keV bin.

The DAMA data: sawtooth vs cosine
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Low energy bins

see also 2003.03340



Impact on the signal

✦ In presence of both a signal + a time-varying background, the signal 
extraction is biased:


✦ In particular, the phase gets shifted, and can deviate more from June 2nd

where the rate varies linearly in time,1

R
0

(t) = C+Bt . (3)

Subtracting the average of the rate in an interval � centred on t
0

yields the residual

S
0

(t) ⌘ R
0

(t)� hR
0

(t)i
�

= B (t� t
0

) , with t
0

� �

2
< t < t

0

+
�

2
, (4)

that becomes a sawtooth wave with period � and amplitude B�/2 if the procedure is

repeated over several data-taking intervals of equal length �.

The sawtooth can be mistaken for a sinusoid with the same period if its amplitude is

small enough as compared with the experimental errors. Indeed, fitting a generic periodic

function with a sinusoid is equivalent to picking up the first term of its Fourier series.

The Fourier series of eq. (4) in the time interval � is

S
0

(t) = B�
1X

n=1

(�1)n+1

n⇡
sin

✓
2⇡n

�
(t� t

0

)

◆
' B�

⇡
sin

✓
2⇡

�
(t� t

0

)

◆
+ .... , (5)

which can be matched to the form of eq. (1) as

T = �, A =
BT

⇡
, � =

⇡

2
+

2⇡t
0

T
. (6)

The best-fit sinusoidal wave has an extremum a quarter of period after the beginning of

the sawtooth. For a decreasing background (B < 0) this extremum at t
peak

= T/4 is a

maximum; for an increasing background (B > 0) it is a minimum, and the maximum is

half a period later, at t
peak

= 3T/4.

The procedure to extract the modulation from the total rate has introduced a bias —

the length � of the time interval over which the background subtraction is periodically

applied — and a nonzero modulation with period � has been generated from a non-

periodic rate. In the presence of a modulated signal as in eq. (1), its amplitude A and

phase � will be modified by the fitting procedure. In the simple case where the duration

of the cycles is taken equal to the period of the signal one has

A2

fit

= A2+
B2T 2

⇡2

+2
ABT

⇡
sin

⇣
��2⇡t

0

T

⌘
, tan�

fit

=
A sin�+ (BT/⇡) cos(2⇡t

0

/T )

A cos�� (BT/⇡) sin(2⇡t
0

/T )
. (7)

2.1 Extracting a modulation from data: a bibliometric example

In order to work out a practical example we consider real data from bibliometrics. We

consider all publications in high-energy physics (excluding astro-ph) since 1995, and we

compute the bi-monthly averages of their number of references N
ref

(t), and of the number

of citations N
cit

(t) they received up to now, as reported in the InSpire database [34]. The

data are shown in the left panel of fig. 1 as a function of publication time t. The average

1This functional form of the total rate was dubbed ‘relaxion’ in [33].
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Frequency analysis
A spectral analysis of the residual rate has also been provided
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data from 1805.10486

✦ Power spectrum consistent 
with sawtooth or cosine 


✦ No significant peak at low 
frequencies (1 year bins, only 
few data points)

✦ Higher modes suppressed as 1/n2


… and smeared by non-constant 
duration of cycles

Bt = B · T
1X

n=1

(�1)n+1

n⇡
sin

✓
2⇡n

T
t

◆



Energy spectrum
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✦ We can fit the data only in the bins for which the time series is provided: 
for other energies, assume that B ~ A 𝜋 / yr holds.


✦ The energy spectrum of the modulated signal is peaked at low energies:


shape consistent with the DM interpretation (exp(-E/E0)), 
but also reasonable for a background



Time-varying backgrounds?

Backgrounds that increase with time are not a crazy possibility, in general.


Few examples (not necessarily relevant to the DAMA rate) include:


✦ Out-of-equilibrium physical effects.


✦ broken equilibrium in a decay chain (e.g. Pb → Bi → Po)


✦ diffusion of contaminants from the surface into the crystals


✦ Instrumental effects.


✦ contamination of PMT glass causing fake events


✦ electronic noise


✦ Apparent increase due to degradation of detector resolution.


Backgrounds that decrease with time can be due e.g. to decays of 
contaminants with life-time of ~ 10 years.



Conclusions

1. A scintillation rate that varies with time can induce a fake modulation 
signal in the DAMA detector.


✦ If the rate grows with time, the induced modulation is peaked in 
June and could be consistent with the observed signal.


✦ If the rate decreases with time, the modulation has a minimum 
around June, and the true signal would be larger.


✦ In any case, a slowly varying rate would bias the extraction of the 
signal. In particular, the peak can be shifted away from June 2nd.


2. The DAMA data are consistent with being generated from a slowly 
varying rate. However DAMA/LIBRA phase 2 data in the 2 - 6 keV 
energy bin prefer a cosine over a sawtooth.

The only (easy!) way to settle the question is to look 
at the time-dependence of the total rate.



Comments
✦ We do not make claims about the presence or absence of any particular background 

in DAMA: we do not have the relevant information


✦ Fact: the current analysis is not robust against a non-constant rate. Either change 
the analysis (no residuals, no yearly cycles), or show that the total rate is constant.


✦ Some ancillary analyses have been presented by DAMA:


✦ A direct fit of signal + constant background to the data, without using residuals, 
but still done cycle by cycle (1805.10486): equivalent to residuals method


✦ A similar fit, with non-constant background, was presented as a response to our paper 
(P. Belli, talk at CNNP2020). Similar results. Still done cycle by cycle: why?


✦ The time-dependence of the event rate can only be determined by… 
… the time-dependence of the event rate!


Information about the various individual backgrounds that contribute to the rate 
(e.g. time-dependence of the contaminants) is not enough:


Rate(t) ≠ Sum[backgrounds]



B a c k u p



Fitting the total rate
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Simulated Monte Carlo events

With the current statistical precision, assuming an amplitude of 
0.01 cpd/kg/keVee, it is possible to fit the modulated signal directly 
from the total rate, without doing residuals (even visible by eye):



Energy spectrum of the total rate

The average rate has changed between Phase 1 and Phase 2 
(probably due to improvements in the detector).


Seems a constant shift above ~ 5 keV.


If a growing component is added, with spectrum as the modulated 
signal, the change between Phase 1 and Phase 2 is shown in green.
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