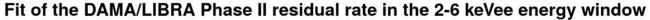
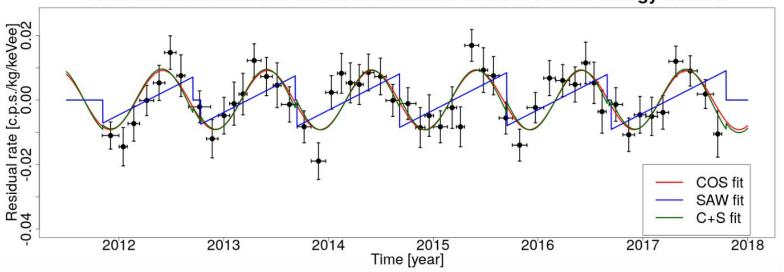
Annual modulation from secular variations: not relaxing DAMA?


March 27th, 2020


<u>A. Messina</u>, M. Nardecchia, S. Piacentini

[ArXiv:2003.03340]

On-line "Newton 1665" seminars
Phenomenology / theory / astro / cosmo

Why?

- Because by eye the sawtooth [Buttazzo et al. ArXiv:2002.00459] cannot reproduce much more than the period of the data!
- Can we be quantitative?

DAMA/Nal and DAMA/LIBRA data

DAMA/Nal: 100kg Nal(TI), 7 yr, exposure = 0.29 ton yr

R. Bernabei et al., Phys. Lett. B480 23-31 (2000).

DAMA/LIBRA I: 250 kg NaI(TI), 7 yr, exposure = 1.04 ton yr

R. Bernabei et al., Phys. J. C56, 333 (2008), arXiv:0804.2741 [astro-ph].

DAMA/LIBRA II: exposure 1.13 ton yr

R. Bernabei et al., Nucl. Phys. At. Energy 19 (2018) 307, arXiv:1805.10486 [hep-ex].

Single-hit residual rate definition

$$flat_{jk} = \langle r_{ijk} \rangle_i$$

$$r_i = \langle r_{ijk} - flat_{jk} \rangle_{jk}$$

k : energy index

j : detector index

i: time index

R. Bernabei et al., Riv. Nuovo Cim. 26N.1, 1-73 (2003)

[arXiv:astro-ph/0307403].

'flat_jk' is the background specific to each crystal, it subtracted before combining them. However, there is no reason to compute flat_jk on the whole cycle. If 'flat_ijk' is linear for instance, then one generates a sawtooth-like signal with period equal to the cycle.

Model comparison: models

Naive likelihood:

$$\mathcal{L}(\{\mu_i\}, \{\sigma_i\}; \{D_i\}) = \prod_{i=i}^n \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right],$$

one data cycle ~ 1yr

Fixed to DM

2 simple, well defined models:

COS:

$$S_{COS}(t) = A \cos\left(\frac{2\pi}{T}(t - t_0)\right),$$
1 free intensity Fixed to

SAW:

$$S_{SAW}(t) = B(t - t_i)$$
 with $t_i - \frac{\Delta_i}{2} < t < t_i + \frac{\Delta_i}{2}$,

parameter

Model comparison: (Bayesian) strategy

- Assign to each model a prior probability: $\pi(COS), \ \pi(SAW)$
- Use the data to update the odds ratio:

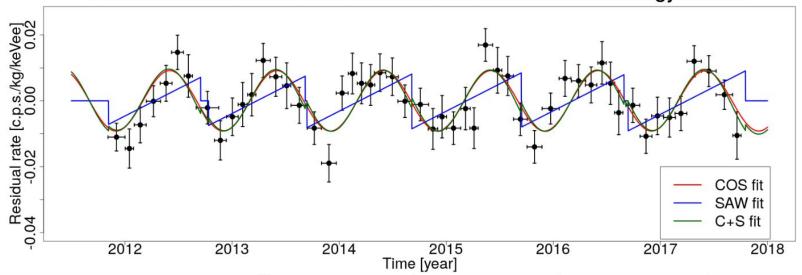
$$\frac{p(COS|D)}{p(SAW|D)} = \frac{\mathcal{L}(COS;D)}{\mathcal{L}(SAW;D)} \times \frac{\pi(COS)}{\pi(SAW)}$$

Posterior odds

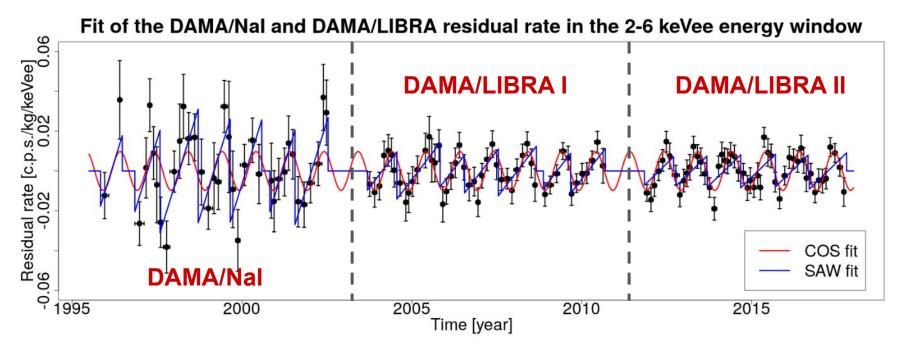
Bayes Factor

Prior odds

• For parametric models, \mathcal{L} is the likelihood averaged over the parameters (not the best fit $\hat{\mathcal{L}}$ (profiled)), for symmetric cases: $\mathcal{L} \simeq \hat{\mathcal{L}} \cdot OF$, OF: ockham's factor (parameters dependent)


Model comparison: Bayes Factor

$$BF_{A,B} = rac{\mathcal{L}(A;D)}{\mathcal{L}(B;D)} \simeq LR_{A,B} \cdot OF_{A,B}$$


- For the <u>frequentistic</u>: $-2log(LR_{AB}) = \Delta\chi_{AB}^2$
- OF: is the Ockham's factor that penalises models with unnecessary complexity (parameters)

 $BF_{A,B}$ =100 means that after having seen the fit you 'should' prefer 100 times more model A than what you did before.

Fit of the DAMA/LIBRA Phase II residual rate in the 2-6 keVee energy window

Model comparison	BF [dB]	LR [dB]	OF [dB]	$\Delta \mathrm{BIC}$
COS vs SAW	86.5	84.7	1.8	-39.0
COS vs C+S	11.3	-1.4	18.0	-3.31
SAW vs C+S	-69.9	-86.2	16.3	35.7

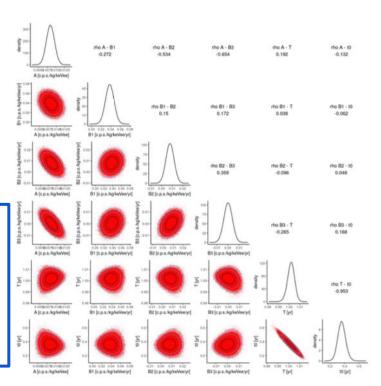
$$A = (0.00973 \pm 0.00078) \, \mathrm{cpd/kg/keVee}$$
 $\chi^2/dof = 116.0/138$

$$\begin{cases} B_{NaI} &= (0.0553 \pm 0.0085) \, \mathrm{cpd/kg/keVee/yr} \\ B_{LIBRAI} &= (0.0222 \pm 0.0032) \, \mathrm{cpd/kg/keVee/yr} \\ B_{LIBRAII} &= (0.0166 \pm 0.0028) \, \mathrm{cpd/kg/keVee/yr} \end{cases} \chi^2/dof = 145.8/136$$

$$BF = 88.8 \text{ dB},$$

 $LR = 64.7 \text{ dB},$
 $OF = 24.1 \text{ dB},$

Fit t0, T, A of the COS+SAW model


$$\begin{cases} A &= (0.00981 \pm 0.00079) \text{ cpd/kg/keVee} \\ t_0 &= (0.382 \pm 0.037) \text{ yr} \\ T &= (1.0008 \pm 0.0023) \text{ yr} \end{cases}$$

$$BF = 62.4 \text{ dB},$$

 $LR = 71.7 \text{ dB},$
 $OF = -9.3 \text{ dB},$

Compatible with:

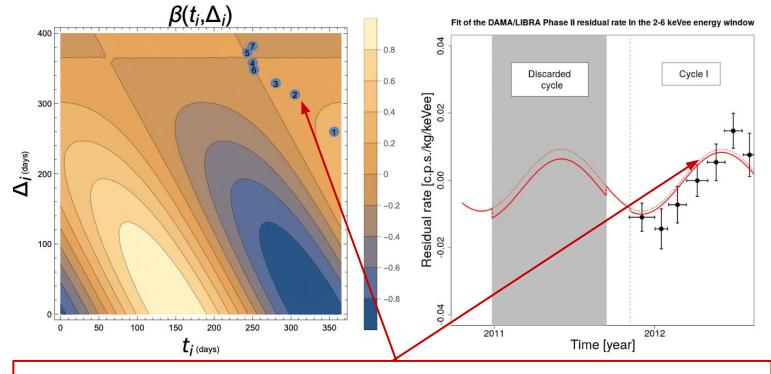
T= 1 yr,

t0 = 2nd July (0.418 yr)

A B1 B2 B3 T t0

Possible bias in the signal subtraction

To remove bkgd, the rate is averaged over time and subtracted:


$$S(t) \equiv r(t) - \langle r(t) \rangle_{\Delta} = A \cos \left(\frac{2\pi t}{T} - \phi \right)$$

If the time interval (ti, Delta) is different than 1 yr or not 'symmetric', you subtract some signal as well:

$$\beta(t_i, \Delta_i) = \frac{1}{\Delta_i} \int_{t_i}^{t_i + \Delta_i} \cos\left(\frac{2\pi}{T}(t' - t_0)\right) dt'.$$

DAMA does removes asymmetric datasets to avoid this problem

You know what you are subtracting and thus can correct for it!

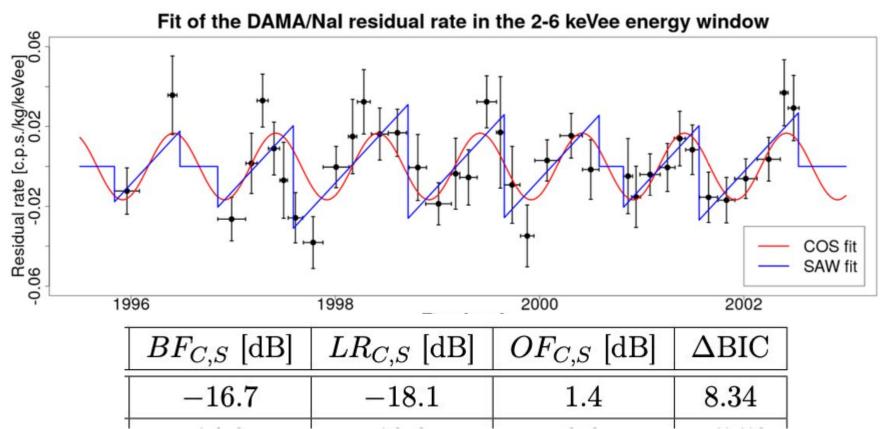
Up to 10% effects in the data cycles used by DAMA

Suggested fitting procedure

$$\mu_i = A \cos\left(\frac{2\pi}{T}(t_i - t_0)\right) - \frac{A}{\Delta} \int_{t^*}^{t^* + \Delta} \cos\left(\frac{2\pi}{T}(t' - t_0)\right) dt' + B\left(t_i - \frac{\Delta}{2}\right)$$

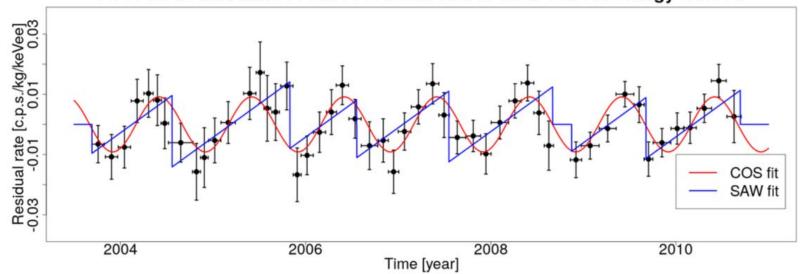
T to fixed to DM

Free T tO


	i, to iixod to biti	1100 1, 10
	F1	F2
$A \left[\mathrm{cpd/kg/keVee} \right]$	0.0084 ± 0.0011	0.0084 ± 0.0012
$ m B1 \left[cpd/kg/keVee/yr ight]$	0.0371 ± 0.0089	0.0381 ± 0.0090
$ m B2 \left[cpd/kg/keVee/yr ight]$	0.0078 ± 0.0038	0.0080 ± 0.0038
$ m B3 \left[cpd/kg/keVee/yr ight]$	-0.0006 ± 0.0035	-0.0003 ± 0.0038

Conclusions

- The DAMA residual modulation cannot be possibly explained by a slowly time-varying background (BF~1E8)
- There is no need to have data taking cycles of one year duration as DAMA has done in the past
- We suggest to include the 2 above effects in the fit!


Additional material

DAMA/Nal fit

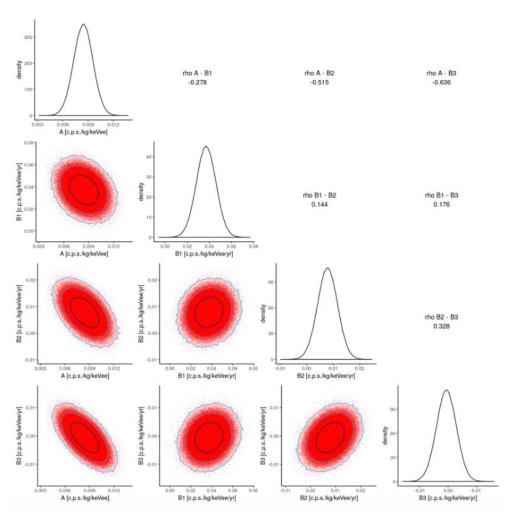
DAMA/LIBRA I fit

Fit of the DAMA/LIBRA Phase I residual rate in the 2-6 keVee energy window

$BF_{C,S}$ [dB]	$LR_{C,S}$ [dB]	$OF_{C,S}$ [dB]	$\Delta \mathrm{BIC}$
14.0	12.0	2.0	-5.53
10 10 100	1 12 12 12	V1 1020	h saman rem

Comparative results

DAMA	Fit to COS model		Fit to SAW model	
phase	$A [{ m cpd/kg/keVee}]$	$\chi^2_{ m cos}/{ m dof}$	$B [{ m cpd/kg/keVee/yr}]$	$\chi^2_{ m saw}/{ m dof}$
DAMA/NaI	0.0168 ± 0.0029	36.7/36	0.0552 ± 0.0085	28.3/36
LIBRA I	0.0092 ± 0.0013	29.6/49	0.0222 ± 0.0032	35.1/49
LIBRA II	0.0092 ± 0.0011	43.3/51	0.0166 ± 0.0029	82.3/51

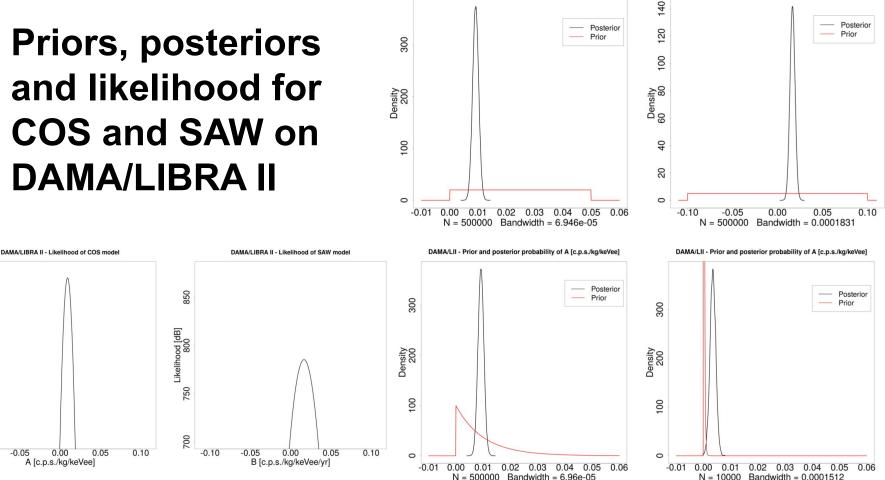

DAMA phase	$BF_{C,S}$ [dB]	$LR_{C,S}$ [dB]	$OF_{C,S}$ [dB]	$\Delta \mathrm{BIC}$
DAMA/NaI	-16.7	-18.1	1.4	8.34
LIBRA Phase I	14.0	12.0	2.0	-5.53
LIBRA Phase II	86.5	84.7	1.8	-39.0
All	88.8	64.7	24.1	-39.7

Comparative results

Fi	it results	$A [{ m cpd/kg/keVee}]$		$B \left[\mathrm{cpd/kg/keVee/yr} \right]$		χ^2/do	f
(C+S fit	0.0102 ± 0.0016		-0.0035 ± 0.0042		42.7/5	0
	Model comparison		BF [dB]	LR [dB]	OF [dB]	$\Delta \mathrm{BIC}$	
	COS vs SAW		86.5	84.7	1.8	-39.0	
	COS v	s C+S	11.3	-1.4	18.0	-3.31	
	SAW v	rs C+S	-69.9	-86.2	16.3	35.7	

Table 3. **Top**: Results of the fit of the cosine amplitude A and the sawtooth coefficient B of the C+S model obtained on the DAMA residuals in the (2-6) keVee energy window during the DAMA/LIBRA Phase II, together with the corresponding $\chi^2/d.o.f.$ **Bottom**: Comparison between the various models in the DAMA/LIBRA Phase II dataset in terms of Bayes factor (BF), likelihood ratio (LR), Ockham's factor (OF) and difference of Bayesian Information Criterion (Δ BIC). For all these three metrics (BF, LR, Δ BIC) the SAW model is largely disfavoured.

Marginal posterior for COS+SAW on DAMA/LIBRA II (*T,t0* fixed)



Priors, posteriors and likelihood for COS and SAW on DAMA/LIBRA II

Likelihood [dB] 800

-0.05

0.00

DAMA/LII - Prior and posterior probability of A [c.p.s./kg/keVee]

DAMA/LII - Prior and posterior probability of B [c.p.s./kg/keVee/yr]