Probing the scale of grand unification

with gravitational waves

Valerie Domcke DESY Hamburg

On-Line "Newton 1665" seminar 23.03.2020

based on arxiv:1912.03695 in collaboration with Wilfried Buchmüller, Hitoshi Murayama and Kai Schmitz

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Outline

cosmic strings in a nutshell

Cosmic strings : one-dimensional topological objects formed in a early Universe phase transition

symmetry breaking pattern $G \to H$ produces cosmic strings if $\Pi_1(G/H) \neq 0$.

consider

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

[Vilenkin '82, Leblond, Shlaer; Siemens '09; Monin, Voloshin '08+'09; Dror et al '19]

$$\Pi_{1}(G_{SM} \times U(1)/G_{SM}) = \Pi_{1}(U(1)) \neq 0 \qquad \text{cosmic strings} \qquad \mathbf{1}_{1}(SO(10)/G_{SM}) = 0 \qquad \text{no cosmic strings} \qquad \mathbf{1}_{1}(SO(10)/G_{SM}) = 0 \qquad \text{no cosmic strings} \qquad \mathbf{1}_{1}(SO(10)/G_{SM}) = 0 \qquad \mathbf{1}_{1}(S$$

consider

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

[Vilenkin '82, Leblond, Shlaer; Siemens '09; Monin, Voloshin '08+'09; Dror et al '19]

$$\Pi_1(G_{SM} \times U(1)/G_{SM}) = \Pi_1(U(1)) \neq 0$$
$$\Pi_1(SO(10)/G_{SM}) = 0$$

resolution: no stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$

generates monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings

string - monopole gas -> decays fast

consider

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

[Vilenkin '82, Leblond, Shlaer; Siemens '09; Monin, Voloshin '08+'09; Dror et al '19]

$$\Pi_1(G_{SM} \times U(1)/G_{SM}) = \Pi_1(U(1)) \neq 0$$
$$\Pi_1(SO(10)/G_{SM}) = 0$$

resolution: no stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$

inflation

generates monopoles

dilutes monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings

4

-> metastable cosmic string network, decays through Schwinger production of monopoles

$$\Gamma_d = \frac{\mu}{2\pi} \exp(-\pi m^2/\mu)$$

Probing the scale of grand unification with gravitational waves

 $\mu \sim v_{B-L}^2$ string tension, $m \sim v_{GUT}$ monopole mass

string - monopole gas -> decays fast

consider

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

[Vilenkin '82, Leblond, Shlaer; Siemens '09; Monin, Voloshin '08+'09; Dror et al '19]

$$\Pi_1(G_{SM} \times U(1)/G_{SM}) = \Pi_1(U(1)) \neq 0$$
$$\Pi_1(SO(10)/G_{SM}) = 0$$

resolution: no stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$

inflation

generates monopoles

dilutes monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings

4

string - monopole gas

-> decays fast

-> metastable cosmic string network, decays through Schwinger production of monopoles

$$\Gamma_d = \frac{\mu}{2\pi} \exp(-\pi m^2/\mu)$$

Probing the scale of grand unification with gravitational waves

 $\mu \sim v_{B-L}^2$ string tension, $m \sim v_{GUT}$ monopole mass

gravitational wave signal

[see eg. Auclair, Blanco-Pillado, Figueroa et al '19]

gravitational wave emission from integration over loop distribution function:

$$\Omega_{GW}(f) = \frac{\partial \rho_{GW}(f)}{\rho_c \partial \ln f} = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$
$$C_n(f) = \frac{2n}{f^2} \int_{z_{min}}^{z_{max}} dz \frac{\mathcal{N}(\ell'(z), t(z))}{H(z)(1+z)^6}$$

decay of cosmic string network at

 $\bar{\ell} \Gamma_d = H$

GW power spectrum of a single loop # of loops emitting GWs observed at frequency f today # of loops with length ℓ at time t $\mathcal{N}_r(\ell, t) = \frac{0.18}{t^{3/2}(\ell + 50 \text{ Gut})^{5/2}}$

cosmological history

evaluated analytically for $\ell \ll 50 \, G\mu \, t$ and $\ell \gg 50 \, G\mu \, t$:

$$\Omega_{GW}(f) = 8.04 \,\Omega_r \left(\frac{G\mu}{50}\right)^{1/2} \min\left[(f/f_*)^{3/2}, 1\right] \,, \quad f_* = 3.0 \times 10^{14} \,\,\mathrm{Hz} \,\, e^{-\pi\kappa/4} \left(\frac{10^{-7}}{G\mu}\right)^{1/2} \,\, e^{-\pi\kappa$$

Probing the scale of grand unification with gravitational waves

gravitational wave signal

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$ with $v_{B-L} \leq v_{GUT}$ can be tested with GWs !

Outline

B-L phase transition

gauging $U(1)_{B-L}$

- global (accidental) symmetry of the SM, subgroup of GUT groups, eg SO(10)
- anomaly cancellation requires introduction of 3 right-handed neutrinos n_i^c
- B-L dynamically broken by B-L Higgs field $S \rightarrow$ neutrino masses via seesaw mechanism

$$W = W_{MSSM} + h_{ij}^{\nu} \mathbf{5}_{i}^{*} n_{j}^{c} H_{u} + \frac{1}{\sqrt{2}} h_{i}^{n} n_{i}^{c} n_{i}^{c} S_{1} + \lambda \Phi \left(\frac{v_{B-L}^{2}}{2} - S_{1} S_{2}\right) + W_{0}$$

cosmological B-L phase transition

Probing the scale of grand unification with gravitational waves

hybrid inflation

hybrid inflation

(p)reheating and leptogenesis

(p)reheating and leptogenesis

Valerie Domcke (DESESTamburg)

Probing the scale of grand unification with gravitational waves 11

inflation, reheating, leptogenesis and dark matter

embedding in SO(10): gravitational wave signal from metastable cosmic strings

Cosmological B-L breaking as common origin of inflation, leptogenesis & DM will be tested by LIGO

Probing the scale of grand unification with gravitational waves 13

embedding in SO(10) : gravitational wave signal from metastable cosmic strings

Cosmological B-L breaking as common origin of inflation, leptogenesis & DM will be tested by LIGO

Probing the scale of grand unification with gravitational waves 13

embedding in SO(10) : gravitational wave signal from metastable cosmic strings

Cosmological B-L breaking as common origin of inflation, leptogenesis & DM will be tested by LIGO

Probing the scale of grand unification with gravitational waves 13

embedding in SO(10) : gravitational wave signal from metastable cosmic strings

Cosmological B-L breaking as common origin of inflation, leptogenesis & DM will be tested by LIGO

Probing the scale of grand unification with gravitational waves 13

Conclusion

Spontaneous B-L breaking at $v_{B-L} \sim 10^{15}$ GeV explains

- cosmic inflation in the unbroken phase
- reheating and leptogenesis through decay of B-L Higgs and RH neutrinos
- dark matter as neutralino LSP

Symmetry breaking $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$ results in metastable cosmic strings

large GW signal (~scale invariant SGWB) predicted in LIGO and LISA band

Conclusion

Spontaneous B-L breaking at $v_{B-L} \sim 10^{15}$ GeV explains

Thank you!

- cosmic inflation in the unbroken phase
- reheating and leptogenesis through decay of B-L Higgs and RH neutrinos
- dark matter as neutralino LSP

Symmetry breaking $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$ results in metastable cosmic strings

large GW signal (~scale invariant SGWB) predicted in LIGO and LISA band