$\begin{array}{c} A \ CC \ Miracle \\ \mbox{(in a Corona-infected world)} \\ Dynamical \ Emergence \ of \ a \ Small \ \Lambda \end{array}$

March 2020

Tomer Volansky Tel-Aviv University

With: Itay Bloch, Csaba Csaki, Michael Geller

$\begin{array}{c} A \ CC \ Miracle \\ \mbox{(in a Corona-infected world)} \\ Dynamical \ Emergence \ of \ a \ Small \ \Lambda \end{array}$

Mar 2020

Tomer Volansky Tel-Aviv University

With: Itay Bloch, Csaba Csaki, Michael Geller

The CC Miracle Dynamical Emergence of a Small Λ

Mar 2020

Tomer Volansky Tel-Aviv University

With: Itay Bloch, Csaba Csaki, Michael Geller

- Three problems:
 - 1. Why is $\Lambda_{\rm obs}^4$ so small? $(\Lambda_{\rm obs} \sim {\rm meV})$

• Three problems:

1. Why is $\Lambda_{\rm obs}^4$ so small? $(\Lambda_{\rm obs} \sim {\rm meV})$

$$\frac{1}{2} \int^{\Lambda_{\rm UV}} d^3k \left[\sum_{\rm bosons} \sqrt{k^2 + m_B^2} - \sum_{\rm fermions} \sqrt{k^2 + m_F^2} \right] \simeq (g_B - g_F) \Lambda_{\rm UV}^4 + \dots$$

$$\Lambda_{\rm UV} = M_{\rm pl} \implies \left(\frac{\Lambda_{\rm obs}}{M_{\rm Pl}}\right)^4 \sim 10^{-120}$$
$$\Lambda_{\rm UV} = \Lambda_{\rm QCD} \implies \left(\frac{\Lambda_{\rm obs}}{\Lambda_{\rm QCD}}\right)^4 \sim 10^{-44}$$

The CC Problem

• Three problems:

1. Why is $\Lambda_{\rm obs}^4$ so small? $(\Lambda_{\rm obs} \sim {\rm meV})$

2. Why is
$$\Omega_{\Lambda,0} \simeq 2 \Omega_{m,0}$$
?
0.7 0.3

• Three problems:

1. Why is $\Lambda_{\rm obs}^4$ so small? $(\Lambda_{\rm obs} \sim {\rm meV})$

Coincidence Problem "Why Now?" Problem

- Three problems:
 - 1. Why is Λ_{obs}^4 so small? $(\Lambda_{obs} \sim meV)$
 - 2. Why is $\Omega_{\Lambda,0} \simeq 2 \,\Omega_{m,0}^2$?
 - 3. Numerology

$$\Lambda_{\rm obs} \sim \frac{\rm TeV^2}{M_{\rm Pl}}$$

Is the CC related to the weak scale?

$$\frac{1}{2} \int^{\Lambda_{\rm UV}} d^3k \left[\sum_{\rm bosons} \sqrt{k^2 + m_B^2} - \sum_{\rm fermions} \sqrt{k^2 + m_F^2} \right] \simeq (g_B - g_F) \Lambda_{\rm UV}^4 + (m_B^2 - m_F^2) \Lambda_{\rm UV}^2 + \dots$$

$$\frac{1}{2} \int^{\Lambda_{\rm UV}} d^3k \left[\sum_{\rm bosons} \sqrt{k^2 + m_B^2} - \sum_{\rm fermions} \sqrt{k^2 + m_F^2} \right] \simeq (g_B - g_F) \Lambda_{\rm UV}^4 + (m_B^2 - m_F^2) \Lambda_{\rm UV}^2 + \dots$$
$$\simeq (g_B - g_F) \Lambda_{\rm UV}^4 + h^2 \Lambda_{\rm UV}^2 + \dots$$

$$\implies m_h^2 \sim \Lambda_{\rm UV}^2$$

Why is $m_h^2 \ll \Lambda_{\rm UV}^2$? The Hierarchy Problem

$$\frac{1}{2} \int^{\Lambda_{\rm UV}} d^3k \left[\sum_{\rm bosons} \sqrt{k^2 + m_B^2} - \sum_{\rm fermions} \sqrt{k^2 + m_F^2} \right] \simeq (g_B - g_F) \Lambda_{\rm UV}^4 + (m_B^2 - m_F^2) \Lambda_{\rm UV}^2 + \dots$$
$$\simeq (g_B - g_F) \Lambda_{\rm UV}^4 + h^2 \Lambda_{\rm UV}^2 + \dots$$

 $\implies m_h^2 \sim \Lambda_{\rm UV}^2$

Why is $m_h^2 \ll \Lambda_{\rm UV}^2$? The Hierarchy Problem

Most solutions predict NP at the weak scale

Some dark matter candidates also point to the TeV scale.

WIMPs are produced in the early universe through freeze-out mechanism

Some dark matter candidates also point to the TeV scale.

WIMPs are produced in the early universe through freeze-out mechanism

$$m_{\rm DM} \simeq \alpha_{\rm eff} \sqrt{T_{\rm eq} M_{\rm Pl}} \sim {\rm TeV}$$

Miracles at the Weak Scale Hierarchy **WIMPs** Problem $m_{DM} \sim \alpha \sqrt{T_{\rm eq} M_{\rm Pl}}$ $\Lambda_{\rm NP} \sim m_H$ NP @ TeV Concerts Concerts tine tuning CC Problem Is the CC related to the TeV Scale?

Outline

- The Idea
- The Crunching Sector
 - A Model
 - The Phase Transition
- Results
- Phenomenological Implications
- Discussion

A New Approach

Approaches for Solving the CC Problem

Over the years, numerous proposals to solve the CC problem

Approaches for Solving the CC Problem

- The anthropic solution assumes that our universe is filled with many domains each with a different value of the CC (the multiverse).
- Anthropic principle: Living observers should only exist in a universe which allows for structure to form and life to develop. [Weinberg, 1987]

• Two main requirements:

- Theory that enables scanning of CC.
- Dynamics that populates regions with different CC.

The one that gave up...

(Anthropics)

Approaches for Solving the CC Problem

- Implication: Eternal inflation \implies Universe is infinitely large.
- Significant shortcoming: The Measure Problem
 - An eternally inflating universe presents a predictivity crisis.
 - How do we regulate the infinities?
 - Choices of different measures have vastly different predictions.

Can we evade eternal inflation?

The one that gave up...

(Anthropics)

Basic Idea

• This talk: a hybrid approach.

Many domains with different CC values.

Dynamics act to crunch regions with large CC

Basic Idea

• This talk: a hybrid approach.

Many domains with different CC values.

Dynamics act to crunch regions with large CC

Only regions with small CC survive till today No need for eternal inflation Observational consequences!

Basic Idea

Inflaton dominates during inflation:

$$\Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$$

Crunching occurs after phase transition: $\Lambda_{max} \lesssim \Lambda_{CFT}$

3 Scales: Λ_{max} , Λ_{CFT} , Λ_{inf}

Inflaton dominates during inflation:

 $\Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$

Crunching occurs after phase transition:

 $\Lambda_{\rm max} \lesssim \Lambda_{\rm CFT}$

 $\Lambda_{\rm max} \lesssim \Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$

A successful model: TeV $\lesssim \Lambda_{\rm max}$

Scales

During Inflation

 $\Lambda_{\rm max} \lesssim \Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$

Scales

 $\Lambda_{\rm max} \lesssim \Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$

Scales

 $\Lambda_{\rm max} \lesssim \Lambda_{\rm CFT} \lesssim \Lambda_{\rm inf}$

Crunching Dynamics?

- What kind of crunching sector can drive a universe to crunch?
- Within a given region of the universe, it must react to the (local) value of the CC. Two options:
 - I. CC-dependent potential for a field that drives it negative.
 - 2. CC-dependent cosmological evolution (secondary phase of inflation).

Crunching Dynamics?

- What kind of crunching sector can drive a universe to crunch?
- Within a given region of the universe, it must react to the (local) value of the CC. Two options:
 - I. CC-dependent potential for a field that drives it negative.
 - 2. CC-dependent cosmological evolution (secondary phase of inflation).
- In this talk: simply allow secondary phase of inflation to drive a phase transition which triggers the crunching of the patch.

 $\rightarrow t$

$\Lambda = \text{GeV}$

Inflation

• CC Problem:

Only small CC survives till today.

Only small CC survives till today.

• Coincidence Problem:

If CC was larger, our universe wouldn't have survived till today.

CC Problem:

Only small CC survives till today.

• Coincidence Problem:

If CC was larger, our universe wouldn't have survived till today.

• Numerology:

We will see:
$$\frac{\Gamma}{V} \sim T_0^4 e^{-S_4} > H_\Lambda^4 = \frac{\Lambda^8}{M_{\rm Pl}^4}$$

CC Problem:

Only small CC survives till today.

• Coincidence Problem:

If CC was larger, our universe wouldn't have survived till today. Numerology:

We will see: $\frac{\Gamma}{V} \sim T_0^4 e^{-S_4} > H_{\Lambda}^4 = \frac{\Lambda^8}{M_{\rm Pl}^4}$ $\Lambda < \sqrt{T_0 M_{\rm Pl}} \sim {\rm TeV}$

The Crunching Sector

A Supercooled Sector

A Supercooled Sector

 $\Lambda_{\rm CFT} \gtrsim {\rm TeV} \Longrightarrow$ Energy difference between vacua are large

Nucleation temperature $< T_0 \simeq \text{meV} \ll \text{TeV}$

Supercooled Crunching Sector

A Supercooled Sector

- It is believed that a spontaneously broken CFT (should one truly exist) exhibits a supercooled phase transition.
- In the unbroken phase, the CFT does not contribute to the CC. In the broken phase it contributes a large and negative CC, triggering the crunching.
- A dual description of such (large-N, non-supersymmetric) theories is described by RS.

[Randall,Sundrum, 1999]

• This theory is dual to a large-N CFT.

[Randall,Sundrum, 1999]

- This theory is dual to a large-N CFT.
- IR brane represents spontaneous breaking of CFT. The dilaton is the location of the IR brane:

$$\chi \equiv \frac{1}{z_{\rm IR}}$$

• In the absence of stabilization, the dilaton has a $V(\chi) = \lambda \chi^4$, driving the IR brane to infinity or to the UV brane.

[Randall,Sundrum, 1999]

• Stabilization is added via Goldberger-Wise mechanism:

[Goldberger,Wise, 1999]

$$S = \int d^4x dz \sqrt{g} \left(g^{MN} \partial_M \phi \partial_N \phi + \Lambda_{\text{bulk}}^5 - m_{\text{bulk}}^2 \phi^2 \right) - \int_{\text{UV}} d^4x \sqrt{g_{\text{ind}}} V_{\text{UV}}(\phi) - \int_{\text{IR}} d^4x \sqrt{g_{\text{ind}}} V_{\text{IR}}(\phi)$$

• The solution to the ϕ EOM:

$$\phi(z) \sim k^{3/2} (kz)^{4+\epsilon} + k^{3/2} (kz)^{-\epsilon}, \qquad \epsilon = \sqrt{4 + m_{\phi}^2/k^2} - 2$$

[Randall,Sundrum, 1999]

• Using the solution we find:

AdS-Schwarzschild

- The thermal phase of the CFT is argued to be described by the canonical ensemble of AdS: AdS-Schwarzschild.
- Black brane horizon (z_H) replaces IR brane:

$$ds^{2} = \left(\frac{1}{k^{2}z^{2}} - \frac{z^{2}}{k^{2}z_{H}^{4}}\right)dt^{2} + \left(\frac{1}{k^{2}z^{2}} - \frac{z^{2}}{k^{2}z_{H}^{4}}\right)^{-1}\frac{dz^{2}}{k^{4}z^{4}} + \frac{dx_{i}^{2}}{k^{2}z^{2}}$$

- Hawking temperature: $T_H = 1/\pi z_H$
- At $z_H \rightarrow \infty$ we get back AdS metric.

$$z = 1/k$$
 $z = z_H$
UV BB Horizon

Crunching transition is known as the Hawking-Page phase transition

- Two problems:
 - I. Small ϵ would imply a very slowly varying tunneling rate as T drops. To improve, consider more generally:

$$V(\chi) = -\lambda \chi^4 + \frac{\lambda_1}{k^{\epsilon}} \chi^{4+\epsilon_1} - \frac{\lambda_2}{k^{2\epsilon}} \chi^{4-\epsilon_2}$$

- Two problems:
 - I. Small ϵ would imply a very slowly varying tunneling rate as T drops. To improve, consider more generally:

$$V(\chi) = -\lambda \chi^4 + \frac{\lambda_1}{k^{\epsilon}} \chi^{4+\epsilon_1} - \frac{\lambda_2}{k^{2\epsilon}} \chi^{4-\epsilon_2}$$

2. Effective theory breaks down when explicit conformal breaking becomes order one:

$$m_{\chi}(\chi_{*}) < \chi_{*} = \text{IR scale}$$

$$\chi_{*} \sim \lambda_{2}^{1/\epsilon_{2}} k$$

The Phase Transition

The Bounce Action

- 2 Contributions:
 - I. O(4)-symmetric @ T = 0
 - 2. O(3)-symmetric @ $T \neq 0$

• Transition between two contributions occurs when $R_{\rm bubble} \sim 1/T$.

$$\phi'' + \frac{2}{r}\phi' - V'(\phi, T) = 0$$

 $\phi(r = 0) = \phi_r(T)$ $\phi(r \to \infty) = \phi_{\text{false}}(T)$

$$\phi'' + \frac{2}{r}\phi' - V'(\phi, T) = 0$$

 $\begin{aligned} \phi(r=0) &= \phi_r(T) \\ \phi(r \to \infty) &= \phi_{\text{false}}(T) \end{aligned}$

$$\phi'' + \frac{2}{r}\phi' - V'(\phi, T) = 0$$

 $\phi(r=0) = \phi_r(T)$ $\phi(r \to \infty) = \phi_{\text{false}}(T)$

• As
$$T \to 0 \Rightarrow \chi_r \to 0$$

• Define T_* :

$$\chi_r(T=T_*)=\chi_*$$

$$\phi'' + \frac{2}{r}\phi' - V'(\phi, T) = 0$$

 $\phi(r = 0) = \phi_r(T)$ $\phi(r \to \infty) = \phi_{\text{false}}(T)$

• Estimate:

Neglect friction.

 χ_r is taken from energy conservation:

$$N^2 T^4 \sim V_{\text{CFT}}(T) = V_{\text{eff}}(\chi) \sim \lambda \chi^4 + \lambda_2 \chi^{4-\epsilon_2}$$

$$\implies \chi_r \sim \chi_* \min\left[\left(\frac{T}{T_*}\right)^{\frac{1}{1-\epsilon_2/4}}, \left(\frac{3N^2}{2\pi^2(4-\epsilon_2)(3-\epsilon_2)\lambda}\right)^{1/4}, \frac{T}{T_*}\right]$$

$$\phi'' + \frac{2}{r}\phi' - V'(\phi, T) = 0$$

 $\phi(r = 0) = \phi_r(T)$ $\phi(r \to \infty) = \phi_{\text{false}}(T)$

• Size of bubble can also be estimated:

$$R_{\text{bubble}} \sim N[V_{\text{eff}}''(\chi_r)]^{-1/2} = \frac{1}{\sqrt{2}} N \chi_r^{-1} \left[N^2 \left(\frac{\chi_*}{\chi_r}\right)^{\epsilon_2} + 8\pi^2 \lambda \right]^{-1/2}$$

• Note: $R_{\text{bubble}}(T = T_*) \sim \chi_*^{-1} \sim T_*^{-1}$

• Relevant at $T \to 0$, so $\chi_r \ll \chi_*$.

- Depends on non-calculable part of the potential.
- On dimensional grounds:

$$S_4 = 2\pi^2 \int_0^\infty dr \cdot r^3 \left[\frac{\bar{\chi}^2}{2} + \bar{V}(\bar{\chi}) \right] \sim N^2 \chi_r^2 R_{\text{bubble}}^2 \sim N^2 \left(\frac{\chi_r}{\chi_*} \right)^{\epsilon_2} \lesssim N^2$$

Tunneling Rates

$$\frac{S_3(T)}{T} \sim \min\left[N^2 \left(\frac{T}{T_*}\right)^{\frac{3\epsilon_2/4}{1-\epsilon_2/4}}, N^{7/2} \left(\frac{1}{2\pi^2\lambda}\right)^{3/4} \right]$$

$$\frac{\Gamma}{V} \sim \begin{cases} T^4 e^{-S_3(T)/T} & T \gtrsim T_* \\ T_*^4 e^{-N^2} & T < T_* \end{cases}$$

Phase transition occurs when:

$$\frac{\Gamma}{V} \simeq H_{\Lambda}^4$$

Crunching occurs at T_* Choose $T_* \sim T_{0,CFT}$

- Three constraints:
 - I. Our patch should survive until today.

$$\frac{\Gamma}{V} \bigg|_{T_{\text{CFT}} \ge T_{\text{CFT}}^0} < H_0^4 \implies \frac{S_3(T)}{T} \bigg|_{T_{\text{CFT}} = T_{\text{CFT}}^0} \gtrsim 280$$

- Three constraints:
 - I. Our patch should survive until today.
 - 2. $N_{\rm eff} < N_{\rm eff}^{\rm obs}$.

$$T_{\rm CFT}^0 \le 0.034 \,\,{
m meV}\left(\frac{N}{4.5}\right)^{-1/2}$$

- Three constraints:
 - I. Our patch should survive until today.
 - 2. $N_{\rm eff} < N_{\rm eff}^{\rm obs}$.
 - 3. No eternal inflation.

$$\frac{\Gamma}{V} \bigg|_{T_{\rm CFT} = H_{\Lambda}} > H_{\Lambda}^4$$

$$T_* \lesssim T_{0,\text{CFT}} \lesssim T_0$$
 $\Lambda \lesssim \Lambda_{\text{max}} \equiv \sqrt{T_* \bar{M}_{\text{Pl}}} e^{-3N^2/128}$

Contributions above this scale require cancellation

New physics at the weak scale!

The CC Miracle

Need $\epsilon_2 \sim \mathcal{O}(1)$

How can we get $\epsilon_2 \mathcal{O}(1)$?

- Adding a confining gauge group in the bulk gives a new source of explicit CFT breaking.
 [von Harling, Servant, 2017; Baratella, Pomarol, Rompineve, 2018]
- Equivalent to weakly gauging a global symmetry of the CFT, with RGE:

$$\frac{1}{g^2(Q,\chi)} = -\frac{b_{\rm CFT}}{8\pi^2} \log \frac{k}{\chi} - \frac{b_{\rm UV}}{8\pi^2} \log \frac{k}{Q} - \frac{b_{\rm IR}}{8\pi^2} \log \frac{\chi}{Q} + \tau_{\rm UV} + \tau_{\rm IR}$$

How can we get $\epsilon_2 \mathcal{O}(1)$?

- Adding a confining gauge group in the bulk gives a new source of explicit CFT breaking. [von Harling, Servant, 2017; Baratella, Pomarol, Rompineve, 2018]
- Equivalent to weakly gauging a global symmetry of the CFT, with RGE:

$$\frac{1}{g^2(Q,\chi)} = -\frac{b_{\text{CFT}}}{8\pi^2} \log \frac{k}{\chi} - \frac{b_{\text{UV}}}{8\pi^2} \log \frac{k}{Q} - \frac{b_{\text{IR}}}{8\pi^2} \log \frac{\chi}{Q} + \tau_{\text{UV}} + \tau_{\text{IR}}$$
CFT DOFs.
$$b_{\text{CFT}} = -\frac{8\pi^2}{kg_5^2}$$
UV and IR
DOFs
UV and IR
threshold

How can we get $\epsilon_2 \mathcal{O}(1)$?

• The QCD' confining scale is then:

$$\Lambda(\chi) = \Lambda_0 \left(\frac{\chi}{\chi_{\min}}\right)^n \qquad n = \frac{b_{\rm IR} - b_{\rm CFT}}{b_{\rm UV} + b_{\rm IR}}$$

• Effective potential (due to e.g. gluon condensation) is then:

$$V_G = -\alpha \Lambda_0^4 \left(\frac{\chi}{\chi_{\min}}\right)^{4n}$$

$$\implies \qquad \epsilon_2 = 4(1-n)$$

Phenomenological Implications

The Coincidence Problem

Mechanism implies relation between age of patch and CC value

If CC would have taken over earlier, our universe would have decayed

Predictions

• Measureable $N_{\rm eff}$:

$$\Delta N_{\rm eff} \simeq 0.23 \left(\frac{\Lambda_{\rm max}}{260 \,{\rm GeV}}\right)^8$$

Predictions

• Measureable $N_{\rm eff}$:

$$\Delta N_{\rm eff} \simeq 0.23 \left(\frac{\Lambda_{\rm max}}{260 \,{\rm GeV}} \right)^8$$

• New physics at the weak scale, e.g. supersymmetry.

The CC Little Hierarchy Problem

SUSY around the corner? Wait for CMB-S4

One more prediction..

One more prediction..

One more prediction.

Anthropics?

- So far we did not mention observers. From the bird's eye view the universe just wants to have a small CC..
- However, one may still wonder why we live in such an old universe?
- We provide no answer to that. Requires (weak) anthropics?

Anthropics?

- So far we did not mention observers. From the bird's eye view the universe just wants to have a small CC..
- However, one may still wonder why we live in such an old universe?
- We provide no answer to that. Requires (weak) anthropics?

More provocative thoughts:

- Copernican Principle implies we should be living in the most likely place: oldest universe with most observers.
- Just like the Doomsday argument: if most likely is today, then demolition may be around the corner.

Just as our model predicts!

What's Next?

• Relaxing the weak scale.

Idea requires solution to the CC beyond (standard) anthropics.

Crunching solution works! Can we build attractive unified models?

[see e.g. Giudice, Kehagias, Riotto, 2019]

What's Next?

- Relaxing the weak scale.
- Different models? Direct reaction to the CC. Do all predict the NP@TeV?
- UV completions. (Supersymmetric?).
- More experimental implications?
- DM from the CFT?
- ...

Lots more to do!

WIMPs $m_{DM} \sim \alpha \sqrt{T_{\rm eq} M_{\rm Pl}}$

Maybe the (near) future is not so depressing after all.. (if we survive the coronavirus...)

 $\Lambda_{\rm NP} \sim \alpha \sqrt{T_0 M_{\rm Pl}}$

Cosmic History

Cosmic History

Randall-Sundrum: $T \neq 0$

- At finite T, we expect the CFT to be restored into a thermal conformal state.
- The effective finite-T contribution:

[Creminelli, Nicolis, Rattazzi, 2001]

- Effective potential pushes $\chi \to 0$ (IR brane $\to \infty$).
- Effective theory breaks down earlier. When $\chi < (k/M)T$, thermal energy is larger than local Planck scale \implies Black brane forms.

At finite T, theory is driven to a different phase. What is it?

• Relevant at $T \to 0$, so $\chi_r \ll \chi_*$.

• Depends on non-calculable part of the potential.

• Relevant at $T \to 0$, so $\chi_r \ll \chi_*$.

• Depends on non-calculable part of the potential.

Inflationary and Scanning Sectors

- Minimal number of e-folds required to populate the patches.
- For simplicity assume landscape is a large number of vacua separated by barriers.
- Decay rate:

$$\frac{\Gamma_{\text{land}}}{V} < H_0^4$$

• Inflation lasts:
$$\frac{\mathcal{N}_e}{H_{\mathrm{inf}}}$$
 with number of patches: $e^{\mathcal{N}_e}$

• Average number of decays:

$$\langle N_{\rm dec} \rangle = N_{\rm patch} P_{\rm dec} \simeq e^{3\mathscr{N}} \frac{\Gamma_{\rm land}}{V} \frac{\mathscr{N}}{H_{\rm inf}^4} < e^{3\mathscr{N}} \mathscr{N} \frac{H_0^4}{H_{\rm inf}^4}$$

• By requiring a minimal number of decays to produce enough patches with different CC values:

$$N_{\rm dec} > \frac{\Lambda_{\rm max}^4}{\Lambda_{\rm obs}^4} \simeq 4 \times 10^{58} \left(\frac{\Lambda_{\rm max}}{\rm TeV}\right)^4$$

• We find,

$$\mathcal{N} \gtrsim 133 + 1.3 \log \left(\frac{\Lambda_{\max} \Lambda_{\inf}^2}{\text{TeV}^3} \right)$$

Need only small number of e-folds!