Implementing complex algorithms for detector

read out with high level language HLS C++ on

FPGAs as pipelined Dataflow Graph.

15th Pisa Meeting on Advanced Detectors
La Biodola, Isola d’Elba, May 22-28, 2022

Data Pre-Processing with High-Level-Synthesis and

Dataflow Programming using HLS C++ Dataflow
Template Library

Thomas Janson and Udo Kebschull
Infrastruktur und Rechnersysteme in der Informationsverarbeitung (IRI)
Goethe-Universitat Frankfurt am Main

ELEMENTS of an DATAFLOW GRAPH

OVERVIEW RESULTS * Variables are static stream buffers
. An alternative method to [T MRS | - (HLSVar This rethearcs of the
: : evinalale 475 oS 1 dataflow graph and can hold more than
develop algorithms targeting one data itermn
-PGASs using C++17 (Intel m_ovmg—avg—hls Gl N ° B - Data items are tokens:
HLS) triangular_smooth_adc 73~ 166 1 0 0 16 « Token consists of the data value of its
. triangular_smooth_float 459 809 14 0 6 1 29 type and a valid bit.
* Dataflow Template Library to oeak finder adc 0 » Assignment shifts Token into stream on

implement deep pipelined

dataflow graphs on Hardware.
* Using C++17 compile-time
features to keep hardware
resources within an acceptable
limit compared to VHDL
implementation.

DESIGN REQUIREMENT

 Developing and testing your
algorithm within a C++
framework.

« Easy use of arbitrary primitive
data types (fixed-point, float,
int, etc.).

« User defined data types.

* Qutcome of calculation on
FPGA the same as in
emulation on CPU.

* [|nitiation interval always lI1=1
for maximum throughput.

GOETHE

UNIVERSITAT

FRANKFURT AM MAIN

mplmention 10 m mmn

moving_avg_rtl

peak_finder 65 129 O 0 0 1 11

compiled with Intel HLS Pro 20.4, Arrial0.

DISCUSSION
* The results show resource usage, initiation
interval, and latency for simple components.

 Comparison with VHDL implementation

« simple VHDL entities without optimization.

* moving_average_hls vs. moving_average_rtl
peak finder_adc vs. peak_finder _rtl

 ALMs are the limiting resources. We see that HLS
needs more resources. With the two simple
components, we need about two times more
resources (ALMs) than VHDL counterparts.

 Resource overhead mostly from component
(interface) control logic (start, busy, done, and stall),
we use the hls_avalon_streaming_component.

OUTLOOK and NEXT STEPS

« Tests with larger complex designs must be
further provided to see how resource usage and
usability scales.

* |Implementation of graph balancing.

« Optimization of component interface.

E Take a picture to

left side of assignment only when Token
on right side is valid.

« Reading from stream always from
offset(0).

* Arithmetic compute nodes are circles.

« Offset Operator (diamond) picks data
items out of stream buffers at given
offset position.

« Each component invocation moves data
items one position further through

stream buffers.
t Avalon-MM Interface

start >
busy done
< ” >
a[31:0] dut sta
b[63:0] data[31:
105:0) returndata[31:0]
3T:0] >
L b ._’
Taken from Intel HLS Reference Manual
18~ component Token<uintl0=> moving_avg(uintl® stream_in) {
19 static HLSVar<uintle,l,-1= stream;
20 stream = stream_1in;
21 const Token<uintl®> three {3,true};
22 Token<uintl@> avg = (stream.offset(-1) + stream.offset(0)
23 + stream.offset(+1)) / three;
24 return avg;
25 1

see source code for more information
https://github.com/docarat/hls_dataflow_template_library




