
OVERVIEW
• An alternative method to

develop algorithms targeting
FPGAs using C++17 (Intel
HLS)

• Dataflow Template Library to
implement deep pipelined

dataflow graphs on Hardware.
• Using C++17 compile-time

features to keep hardware
resources within an acceptable
limit compared to VHDL
implementation.

DESIGN REQUIREMENT
• Developing and testing your

algorithm within a C++
framework.

• Easy use of arbitrary primitive
data types (fixed-point, float,
int, etc.).

• User defined data types.
• Outcome of calculation on

FPGA the same as in
emulation on CPU.

• Initiation interval always II=1
for maximum throughput.

Thomas Janson and Udo Kebschull
Infrastruktur und Rechnersysteme in der Informationsverarbeitung (IRI)

Goethe-Universität Frankfurt am Main

Implementing complex algorithms for detector

read out with high level language HLS C++ on

FPGAs as pipelined Dataflow Graph.

RESULTS

Data Pre-Processing with High-Level-Synthesis and
Dataflow Programming using HLS C++ Dataflow

Template Library

Take a picture to
see source code for more information
https://github.com/docarat/hls_dataflow_template_library

15th Pisa Meeting on Advanced Detectors
La Biodola, Isola d’Elba, May 22-28, 2022

Implementation (HLS) ALM REG MLAB RAM DSP II Latency

moving_avg 47.5 95 2 1 0 1 8

moving_avg_hls 39.5 74 1 0 1 1 8

triangular_smooth_adc 73 166 1 0 0 1 6

triangular_smooth_float 459 809 14 0 6 1 29

peak_finder_adc 120 293 1 0 0 1 9

Implementation (VHDL) ALM REG MLAB RAM DSP II Latency

moving_avg_rtl 21 37 0 0 1 1 5

peak_finder 65 129 0 0 0 1 11

DISCUSSION
• The results show resource usage, initiation

interval, and latency for simple components.
• Comparison with VHDL implementation

• simple VHDL entities without optimization.
• moving_average_hls vs. moving_average_rtl

peak_finder_adc vs. peak_finder_rtl
• ALMs are the limiting resources. We see that HLS

needs more resources. With the two simple
components, we need about two times more
resources (ALMs) than VHDL counterparts.

• Resource overhead mostly from component
(interface) control logic (start, busy, done, and stall),
we use the hls_avalon_streaming_component.

OUTLOOK and NEXT STEPS
• Tests with larger complex designs must be

further provided to see how resource usage and
usability scales.

• Implementation of graph balancing.
• Optimization of component interface.

compiled with Intel HLS Pro 20.4, Arria10.

Taken from Intel HLS Reference Manual

ELEMENTS of an DATAFLOW GRAPH
• Variables are static stream buffers

(HLSVar). This are the arcs of the
dataflow graph and can hold more than
one data item.

• Data items are tokens:
• Token consists of the data value of its

type and a valid bit.
• Assignment shifts Token into stream on

left side of assignment only when Token
on right side is valid.

• Reading from stream always from
offset(0).

• Arithmetic compute nodes are circles.
• Offset Operator (diamond) picks data

items out of stream buffers at given
offset position.

• Each component invocation moves data
items one position further through
stream buffers.

