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ELEMENTS of an DATAFLOW GRAPH
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implement deep pipelined

dataflow graphs on Hardware.
* Using C++17 compile-time
features to keep hardware
resources within an acceptable
limit compared to VHDL
implementation.

DESIGN REQUIREMENT

 Developing and testing your
algorithm within a C++
framework.

« Easy use of arbitrary primitive
data types (fixed-point, float,
int, etc.).

« User defined data types.

* Qutcome of calculation on
FPGA the same as in
emulation on CPU.

* [|nitiation interval always lI1=1
for maximum throughput.
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compiled with Intel HLS Pro 20.4, Arrial0.

DISCUSSION
* The results show resource usage, initiation
interval, and latency for simple components.

 Comparison with VHDL implementation

« simple VHDL entities without optimization.

* moving_average_hls vs. moving_average_rtl
peak finder_adc vs. peak_finder _rtl

 ALMs are the limiting resources. We see that HLS
needs more resources. With the two simple
components, we need about two times more
resources (ALMs) than VHDL counterparts.

 Resource overhead mostly from component
(interface) control logic (start, busy, done, and stall),
we use the hls_avalon_streaming_component.

OUTLOOK and NEXT STEPS

« Tests with larger complex designs must be
further provided to see how resource usage and
usability scales.

* |Implementation of graph balancing.

« Optimization of component interface.
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left side of assignment only when Token
on right side is valid.

« Reading from stream always from
offset(0).

* Arithmetic compute nodes are circles.

« Offset Operator (diamond) picks data
items out of stream buffers at given
offset position.

« Each component invocation moves data
items one position further through

stream buffers.
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Taken from Intel HLS Reference Manual
18~ component Token<uintl0=> moving_avg(uintl® stream_in) {
19 static HLSVar<uintle,l,-1= stream;
20 stream = stream_1in;
21 const Token<uintl®> three {3,true};
22 Token<uintl@> avg = (stream.offset(-1) + stream.offset(0)
23 + stream.offset(+1)) / three;
24 return avg;
25 1

see source code for more information
https://github.com/docarat/hls_dataflow_template_library




