ORIGIN, an EU project targeting real-time 3D dose imaging and source localization in brachytherapy: commissioning and first results of a 16-sensor prototype.

A. Giaz2, N. Ampilogov8, M. Caccia1, S. Cometti2, W. Kam2, S. O’Keeffe2, M. Martyn1 and R. Santoro11

1 Dipartimento di Scienza e Alta Tecnologia, Università degli studi dell’Insubria, Como, Italy
2 Optical Fiber Sensors Research Centre, University of Limerick, Limerick, Ireland.

2Department of Radiotherapy, Belfast Medical School, Queen’s University, Belfast, UK.

1Department of Radiotherapy Physics, Galway Clinic, Galway, Ireland.

2Optical Fiber Sensors Research Centre, University of Limerick, Limerick, Ireland.

The ORIGIN project addresses the urgent need to deliver more precise and effective BrachyTherapy (BT) treatments for prostate and gynaecological oncology. The project targets on the development of two innovative single point optical fibre dosimeters with inorganic scintillators on the tip. The ORIGIN system prototype integrates an array of such sensors with an acquisition system to provide real-time patient dose imaging by signal counting, which is currently unavailable, with a spatial resolution of 0.5 mm for HDR in 0.1 s and 3 mm for LDR in 0.5 s.

ORIGIN brings together a highly multidisciplinary consortium of leaders in their respective fields.

\textbf{SUMMARY}

The ORIGIN project integrates an array of such sensors with an acquisition system to provide real-time patient dose imaging by signal counting, which is currently unavailable, with a spatial resolution of 0.5 mm for HDR in 0.1 s and 3 mm for LDR in 0.5 s.

\textbf{BRACHYTHERAPY}

Radiotherapy makes use of ionization for cancer treatment, which is required by 50-60% of the patients. This treatment can be delivered in the form of external beam radiotherapy, using linear accelerators, or internal radioactive sources (BT).

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Source} & \textbf{Activity} & \textbf{Implantation} & \textbf{\(\langle E_{\gamma}\rangle\)} & \textbf{\(\Delta @ \langle E_{\gamma}\rangle\)} \\
\hline
LDR & 125I & 15 M\textsubscript{Bq} & Permanent & 35 keV & 3 cm \\
HDR & 192Ir & \sim 100 G\textsubscript{Bq} & Temporary & 380 keV & 10 cm \\
\hline
\end{tabular}
\end{table}

\textbf{SYSTEM DEVELOPMENT & CHARACTERIZATION}

\textbf{16-CHANNEL SYSTEM}

Front-end: CAEN FERS board (DT5202) - 64 channel (2 CITIROC1A ASICs).

Among the main features: Single p.e. counting capability (Max 20MHz), SiPM bias voltage 20 - 100V, Ethernet, usb2 and optical link interface for readout (up to 6.25 Gbit/s).

\textbf{16-CHANNEL SYSTEM CLINICAL MEASUREMENT}

The initial evaluation of the 16-channel system, with sensors placed around a 192Ir radioactive source was performed at the Queen’s University Hospital (Belfast, Ireland), using a phantom with a circular geometry in a water tank.

\textbf{SOURCE LOCALIZATION}

The source is moved from a 10 cm distance on the z axis down to the sensors plane (z=0 cm) and the corresponding counting rate as a function of distance was measured.

\begin{itemize}
\item The Source position was reconstructed using triangulation algorithm based on the counting rate measured by every source.
\end{itemize}

\textbf{EQUALIZATION PROCEDURE}

Following the equalization procedure, the residual systematic variation (due to the geometrical acceptance, the fiber non-uniformity and positioning) is less than 1%.

\begin{itemize}
\item Before channel equalization
\item After channel equalization
\end{itemize}

\textbf{OUTLOOK}

The clinical HDR characterization of the ORIGIN dosimeter shows excellent results, while the LDR characterization results are expected soon. Following a subsequent test with anatomical phantoms, the ORIGIN dosimeter prototype will be integrated in clinical systems.