Construction and testing of the sMDT system for the HL-LHC ATLAS muon detector upgrade

The sMDT muon detector

- The small-diameter monitored drift tube (sMDT) muon detector is being built at the production sites of MPI and Michigan to upgrade the ATLAS muon spectrometer for the HL-LHC [1,2,3].
- The expected single-hit spatial resolution of sMDT detectors is 106 µm [3].
- Each detector has 8 layers of tubes separated by a spacer frame between layers 4 and 5.
- 55 of 96 chambers constructed for a total of 46080 tubes to be delivered by end of 2023.

Fig. 5

Drift tube construction

- Drift tubes tested for wire tension, length, gas leaks. dark current. Tension tested twice, 2 weeks apart.
- · Fig. 4: histogram of wire tension test results. Minimum wire tension is 325 g.

arameter	Value	Parameter	Value
outer diameter	15 mm	Wire thickness	50 µm
Vall thickness	0.4 mm	Wire potential	2730 V
ube length	1.6245 m	Gas mixture	Ar:CO ₂ (93:7)
Vire composition	W-Rh, Au plated	Gas pressure	3 bar (abs.)

Mechanical precision and alignment

- Fig. 5: at Michigan wire position is measured on granite table using reference surface with a height gauge. At MPI an automated coordinate measurement machine is used.
- Fig. 6: wire position accuracy measured better than 10 µm rms.

Upgrade these

chambers Make room for New RPC lave

- Platforms for alignment and magnetic field sensors are mounted on the chamber. Platform positions are within $\pm 200 \ \mu m$ and measured with 10 µm precision. Alignment sensors establish the chamber position relative to other ATLAS chambers.
- The spacer frame contains an in-plane alignment system to measure chamber deformation. The alignment system measures along 4 optical paths: 2 parallel to the tubes and 2 diagonal across the chamber.
- Fig. 7: deformation is limited to 120 µm as the chamber is rotated through 360°.
- Fig. 8: gas distribution manifolds are installed. Chambers are leak tested to verify the total leak rate is less than 0.3 mbar/h at 3 bar.

- LED2-CAM2

350 angle (dec

Obs

Data acquisition

Cosmic-rays • Fig. 9: trigger setup [6]. Fig. 9 Fig. 10: read-out ASIC digitizer electronics Trigger Scintillator + PMT mounted on a chamber. Fig 11: drift time spectrum for one tube from cosmicray test. Maximum drift time ≅200 ns. A time slew correction is applied. Leading (falling edges) fit sMDT tubes Hit (exponential x Fermi- Fig 12: Wilkinson ADC spectrum for one tube, fit with skew normal [6]. T0 -150.78 ± 0.10 ns Peak 158.9 ± 0.1 3500 Width 27.4 ± 0.1 Slope 4.60 ± 0.07 /ns 3000 Skew 2.26 ± 0.02 Tmax 43.9 ± 0.2 r X^2/DoF Slope 4.4 ± 0.1 /ns 2500 DTmax 194.7 ± 0.2 ns 2000 1500 1000 Fig. 12 Fig. 11 350 Wilkinson ADC [ns

Chamber test results

-100 -200

Cosmic-ray tracking

- A time-to-space r(t) function is derived in situ [4,6].
- · Fig. 13: tracks are parameterized as 2D straight lines in the plane perpendicular to the wires. Blue circles are reconstructed drift radii. Grev and white circles show tubes connected to different front-end boards.
- Fig 14: Geant4 [7] simulation is used to estimate the multiple Coulomb scattering correction. Correction to residual distribution is applied using a deconvolution [6].

References

[1] ATLAS collaboration, JINST 3 (2008) S08003 [2] ATLAS collaboration, ATLAS-TDR-026 (2017). [3] H. Kroha, R. Fakhrutdinov and A. Kozhin, JINST 12 (2017) 12 [4] O. Kortner, H. Kroha, J. von Loeben, ATL-COM-MUON-2011-03 [5] ATLAS collaboration, JINST 14 (2019) P09011 [6] K. Nelson, Y. Guo, D. Amidei, E. Diehl, arXiv:2105.09263 [7] The Geant4 collaboration, Nucl. Inst. Meth. A. 506 (2003) 3 p. 250-303

Fig. 18

140 r

130

120

90

80

70

Ē

sMDT Resol

- Fig. 15: Average tube noise measured at University of Michigan site.
- Fig. 16: average tube noise measured at MPI Munich site.

with Fermi-Dirac

Dirac) [6].

1800

1600

1400

1200

1000

800

600

400 200

- Fig. 17: Tubes on average 99% efficient. Each layer is 94.6% efficient due to geometric acceptance from tube walls. 6896 tubes (15 chambers) from University of Michigan shown.
- 24 of 28176 tubes had wire removed for various issues (wire slipped, wire snapped).
- Fig. 18: The observed (expected) median single-hit resolution is 102.9±8.1 µm (106 µm) [3]. (Fig. 15c shows one chamber). Results for 19 chambers produced at University of Michigan shown. MPI results are consistent.
- Fig 19: sMDT resolution as a function of drift radius is consistent with the ATLAS Run 2 MDT result [5].

Kevin Nelson (University of Michigan), on behalf of the ATLAS Muon Collaboration **Pisa Meeting on Advanced Detectors** May 22-28, 2022

