Effects of hydrocarbon admixtures to the electroluminescence yield of He-CF

R.J.C. Roque, R.D.P. Mano, F.D. Amaro, C.M.B. Monteiro, J.M.F. dos Santos

2 1 9 0

LIBPhys-UC Department of Physics, University of Coimbra, Portugal

UNIVERSIDADE D

Summary

He-CF₄ is a very attractive gas mixture for Optical Readout Detectors in Dark Matter Search [1]: See G. Dho poster

He extends the sensitivity to low WIMP masses.

CF₄ improves gas scintillation and is sensitive to Spin-Dependent WIMP-nucleon interactions.

Hydrocarbons like methane or isobutane would further improve the sensitivity to low WIMP mass [2].

We evaluated the electroluminescence (EL) yield of methane and isobutane admixtures to ${\rm He\text{-}40\%CF_4}$ to find the best ternary mixture.

Setup

A Large Area Avalanche Photodiode (LAAPD) was used to readout the EL produced in the avalanches of a Gas Electron Multiplier (GEM).

A borosilicate glass window was placed on top of the LAAPD to filter the UV photons (<300 nm) and evaluate the **visible EL**.

We kept $He-40\%CF_4$ flowing at 4 L/h and then added the required percentage of hydrocarbon.

Results

Isobutane Admixtures to He-40%CF

Small percentages of isobutane and methane quench the visible and UV photons emitted by He-40%CF₄, but they do not completely compromise the optical readout.

Isobutane admixtures decrease the maximum attainable EL yield, relatively to He-40%CF₄, but the optical readout is possible for concentrations up to 5%.

Methane admixtures increase the electrical stability of the detector, meaning that higher GEM voltages could be achieved. Because of this, methane admixtures up to 7% attain higher maximum EL yields than He-40%CF₄.

Methane Admixtures to He-40%CF

Maximum attainable EL yield

Conclusions

Using up to 7% methane to increase the WIMP sensitivity of Dark Matter Detectors filled with He-40%CF₄ will also improve their optical readout.

References

[1] Costa, I. Abritta, et al. "CYGNO: Triple-GEM optical readout for directional dark matter search." Journal of Physics: Conference Series. Vol. 1498. No. 1. IOP Publishing, 2020.

[2] Amaro, Fernando Domingues, et al. "The CYGNO Experiment." Instruments 6.1 (2022): 6.