15th Pisa meeting on Advanced Detectors

La Biodola — Isola d'Elba

22-26 May, 2022

Ultra low noise readout with Travelling Wave Parametric Amplifiers: the DARTWARS project

Alessio Rettaroli¹

on behalf of the DARTWARS collaboration

1. INFN – Laboratori Nazionali di Frascati

- Motivation: low-noise microwave detection
- Principles of operation of TWPA
 - J-TWPA
 - KI-TWPA
- The DARTWARS project
 - Goals
 - Preliminary results
- Conclusions

Ultra-low noise detection and **amplification** is essential in many fields, from **fundamental physics** to quantum computing

- Dark matter (axions, dark photons...)
- Neutrinos
- CMB
- Qubit readout

Large bandwidth and lowest possible noise required for reading weak microwave signals from multiple detectors

MKIDs Array of Microwave Kinetic Inductance Detectors

TESs Array of Transition Edge Sensors

HEMT (High-electron-mobility transistor)

mw cavities mw signals from radiofrequency cavities

qubits mw resonators coupled to qubit circuit

JPA (Josephson parametric amplifier)

Noise at the quantum limit

• Noise 10-40 times above quantum limit

Superconducting **Travelling Wave Parametric Amplifiers** (TWPAs): transmission line with embedded nonlinear lumped elements

The **nonlinear current-inductance relation** is responsible of the **mixing** and **parametric amplification**

 $L(I) \simeq L(0) \left(1 + \frac{I^2}{I_c^2}\right)$

- Gain (≲ 20 dB)
- Large bandwidth (few GHz)
- Noise at the quantum limit
- Dynamic range depending on technology

The DARTWARS project – goals

- Development of high-performing parametric amplifiers by exploring new design solutions, new materials and fabrication processes, to achieve:
 - High gain ($\gtrsim 20 \text{ dB}$)
 - Large **bandwidth** (in the 5-10 GHz range)
 - Large saturation power (~ 50 dBm)
 - Nearly quantum-limited **noise** (\gtrsim 600 mK)
 - Reduction of gain ripple
- 2. Readout demonstration of various detectos and devices, such as MKIDs, TESs, mw cavities and qubits

Courtesy of INRiM

Josephson Travelling Wave Parametric Amplifier

Mixing process due to the nonlinear inductance of the JJs

- Gain (< 20 dB)
- Large bandwidth (few GHz)
- Quantum-limited noise level
- Small dynamic range (< -90 dBm)

4-Wave Mixing (4WM): $2fP = f_s + f_i$ unbiased transmission line 3-Wave Mixing (3WM): $f_P = f_s + f_i$ biased transmission line

Kinetic Inductance Travelling Wave Parametric Amplifier

Spiral CPW transmission line with periodic impedance loadings

Eom et al., Nature Physics 8 (2012) 623–627

1)

2)

Artificial transmission line with lumped elements

Exploit the non-linear kinetic inductance of TiN or NbTiN

- Large ripples on gain profile
- Large bandwidth (few GHz)
- Near-quantum-limited noise level
- High dynamic range (≥ -50 dBm)

The DARTWARS project – institutions

CSN5 project started in 2021

- INFN-MIB: project coordination; design and characterization of the devices (mainly KI-TWPA)
- INFN-LNF: J-TWPA fabrication supervision and characterization
- INFN-LE: investigation of magnon-cavity polaritons applied to quantum computing and quantum sensing
- INFN-SA: design and simulation of TWPAs; J-TWPA testing
- INFN-TIFPA: supervision of production at FBK; participation in the characterization (mainly KI-TWPA)
- **FBK**: fabrication of KI-TWPA prototypes
- INRIM: design and fabrication of J-TWPA prototypes
- **IBS-CAPP** (S. Korea): co-finances the production; participation in the characterization
- NIST (USA): participation in KI-TWPA design and test

J-TWPA preliminary measurements at LNF

- measurements showed clear evidence of parametric amplification but with a nonhomogeneous behavior in frequency probably due to a nonhomogeneous fabrication of the ~900 JJs of the device
- Both 3-wave mixing and 4-wave mixings verified
- gain up to \sim 30 dB was observed at particular frequencies and with a minimum noise temperature of 3.63 K

Degenerate Mode

• JJs fabricated by I $I_c = 4 \ \mu A$ and R_n $I_c = 4 \ \mu A$ and R_n $I_c = 4 \ \mu A$ and R_n

Substrate 02 - R

 4-terminals measurements with a probe station

JJs testing with probe station at uniMIB

- Testing homogeneity of junctions: spread between 5% and 10%
- Detected position-dependent resistance

16

10

KI-TWPA materials preliminary characterization at FBK/TIFPA

$$L_k = L_{k_0} \left(1 + \frac{I^2}{I_*^2} \right)$$

Kinetic inductance related to resonant frequency

 $f_{\rm res}^{-2} \propto (L_k + L_g)C$ and $I^2 \propto P_{\rm feed}$

Courtesy of Marco Faverzani

Some Ads

For more details go see the **posters**:

Design and preliminary characterizations of traveling wave parametric amplifiers for DARTWARS

feat. Matteo Borghesi

Qub-IT: Quantum sensing with superconducting qubits for fundamental physics

feat. Danilo Labranca

- **TWPAs** are promising candidates of **quantum-limited microwave amplifiers** for applications in fundamental physics and quantum computing
- DARTWARS aims at:
 - developing (nearly-)quantum limited Traveling Wave Parametric Amplifiers with two approaches: KI-TWPAs and J-TWPAs, exploring new designs and materials
 - demonstrating the readout of several devices (TES/MKIDs/RF cavities/qubits)
- Preliminary measurements and characterizations done. There is **room for improvement** in terms of gain and bandwidth
- Design and fabrication improvements are ongoing