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Introduction
1 Jiangmen Underground Neutrino Observatory

(JUNO):
• multipurpose experiment;
• 53 km away from 8 reactor cores in China;
• ∼600-meter deep underground;
• data taking expected in ∼2023.

2 The main goals of JUNO:
• neutrino mass ordering (3σ in 6 years);
• precise measure of oscillation parameters
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3 The Central Detector:
• detection channel: νe + p → e++n;
• deposited energy converts to optical light;
• the largest liquid scintillator detector: 20 kt;
• 77.9% photo-coverage: 18k 20”, 26k 3” photo-

multiplier tubes (PMTs).
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Problem statement
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Example of an event seen by 20” PMTs for a positron of 6.165 MeV deposited energy. The color represents
the accumulated charge in PMTs (left) and PMT activation time (right). The gray sphere: the primary vertex.

Avaliable information:
• Charge at each PMT;
• First Hit Time (FHT) at each PMT;
• PMT position.

We want to provide:

Deposited energy Edep with resolution 3% @ 1 MeV.

Data description
To train model and to evaluate model performance we prepared two datasets generated by the full detector
Monte Carlo method using the official JUNO software:

1 Training dataset:
• 5 million positron events;
• uniformly distributed in kinetic energy Ekin;
• uniformly spread in the volume of the central de-

tector;
• Ekin ∈ [0,10]MeV. Edep = Ekin +1.022 MeV.

2 Testing dataset:
• subsets with discrete kinetic energies;
• 0 MeV, 0.1 MeV, 0.3 MeV, 0.6 MeV, 1 MeV,

2 MeV, ..., 10 MeV;
• uniform spatial distribution;
• each subset contains about 100 thousand events.

Aggregated features
For energy reconstruction, we use aggregated information from the whole array of PMTs as features for models.
Their full set is as follows:

1 AccumCharge — the accumulated charge on fired PMTs;
2 nPMTs — the total number of fired PMTs;
3 Coordinates of the center of charge:
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and its radial component: Rcc = |⃗rcc|
4 Coordinates of the center of FHT:
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and its radial component: Rcht = |⃗rcht|
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√
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cc;

12 with 7 similar features for the com-
ponents of the center of FHT.

13 Percentiles of FHT and charge distributions:
• {ht2%,ht5%,ht10%,ht15%, ...,ht90%,ht95%}
• {pe2%,pe5%,pe10%,pe15%, ...,pe90%,pe95%}

14 Differences between percentiles for FHT:
• {ht5%−2%,ht10%−5%, ...,ht95%−90%}

15 Moments for FHT and charge distributions:
• {htmean,htstd,htskew,htkurtosis}
• {pemean,pestd,peskew,pekurtosis}
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Examples of cumulative distribution functions and probability density functions for FHT (left) and charge
(right) distributions. R ≃ 0 m, Ekin varied. Dashes lines illustrate mean values.

Models description
Fully Connected Deep Neural Network (FCDNN):
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• Optimization of the hyperparameters using
BayesianOptimization;

• Training with early stopping;
• Validation dataset: 400k events;
• Selected features:

1 AccumCharge
2 nPMTs
3 Rcc
4 Rcht
5 ρcc

6 ρcht
7 pemean
8 pestd
9 peskew
10 pekurtosis

11 Percentiles of FHT distribution: {ht2%, ht5%,
ht10%, ht15%, ..., ht90%, ht95%}.

Boosted Decision Trees (BDT) from XGBoost:
• Optimized set of features:

1 AccumCharge
2 Rcht
3 zcc
4 pestd
5 nPMTs
6 htkurtosis
7 ht25%−20%
8 Rcc

9 ht5%−2%
10 pemean
11 Jcht
12 ϕcc
13 ht35%−30%
14 ht20%−15%
15 pe35%
16 ht30%−25%

• Optimized hyperparameters (using Grid Search):
1 The maximum depth of the tree: 10;
2 Number of trees in the ensemble: ≃300;
3 Learning rate: 0.08.
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Calibration sources
JUNOhas an extensive calibration program: multiple radioactive sources and background processes are planned
to be used. We consider three calibration sources, listed in the following table:

Source Type Radiation
241Am−13C γ neutron + 6.13 MeV
60Co γ 1.173 + 1.333 MeV
68Ge e+ annihilation 0.511 + 0.511 MeV

There is an additional bias, caused by the different event topology for gamma sources as opposed to positrons
in the training dataset, which was corrected using values predicted by the models on pure gamma events.
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Distributions of true deposited energy and predicted energy, using the BDT model, for calibration sources.

The agreement between the expected source spectra and the spectra reconstructed from the real calibration data
will indicate the correctness of the algorithms’ prediction.

Results
Metrics:

1 Defined by a Gaussian fit of the
Epredicted −Edep distributions;

2 Resolution: σ/Edep, where σ —
standard deviation of the fit;

3 Bias µ/Edep, where µ —mean of
the fit.

Parameterization:

σ
Edep

=

√√√√( a√
Edep

)2

+b2 +

(
c

Edep

)2

The JUNO requirement to the determination of neutrino mass ordering could be translated
into a convenient requirement on an effective resolution ã as:

ã ≡
√
(a)2 +(1.6×b)2 +

( c
1.6

)2
≤ 3%
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Model a±∆a b±∆b c±∆c ã±∆ã
BDT 2.573 ± 0.097 0.763 ± 0.045 0.990 ± 0.394 2.914 ± 0.016
FCDNN 2.316 ± 0.139 0.827 ± 0.054 1.474 ± 0.285 2.822 ± 0.027

Summary
Machine learning approaches
(FCDNN and BDT) using
aggregated features:
• required ã ≤ 3%

achieved;
• great computation speed;
• considered three calibra-

tion sources for the future
evaluation of the models
on the real data.
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