

Low Gain Avalanche Diodes Technology: state of the art and new developments

G. Paternoster (Fondazione Bruno Kessler – Trento Italy) e-mail: paternoster@fbk.eu On behalf of "UFSD Collaboration" (Università degli Studi di Torino – INFN Torino –Università del Piemonte Orientale -Fondazione Bruno Kessler - Università di Trento - TIFPA-INFN. With the contribution of RD50 collaboration, CERN.

Abstract

Low Gain Avalanche Diodes (LGAD) are considered one of the most promising solutions for timing application in HEP experiments and 4dimensional tracking, due to some important advantages: larger internal signal, better time resolution and higher radiation hardness with respect to standard p-i-n based sensors.

Novel design schemes and microfabrication technologies are under investigation, mainly focused on improving two key aspects of the technology: i) increasing the radiation hardness at fluence higher than 3e15 neq/cm² and ii) improving the spatial resolution moving through fine-pixellated and high-fill-factor sensor designs. To improve the spatial resolution, novel segmentations schemes

have been developed: i) Trench-Isolated LGAD (**TI-LGAD**) exploits narrow trenches, physically etched in the silicon to reduce the deadborder area of the pixel, while **AC- and DC-coupled Resistive Silicon Detectors** (RSD and DC-RSD, respectively) exploit signal sharing among multiple pads. Both the technologies allow to reach excellent spatial resolution without spoiling time resolution.

To improve the radiation hardness at high fluences, Carbon **co-implantation** shown to be effective in preserving the excellent time resolution of LGADs up to fluence 2e15 neq/cm². Novel techniques like **compensated doping** profiles are under investigations and could be effective in leading the radiation hardens of these devices up to unprecedent levels.

Trench-Isolated LGAD

[1] G. Paternoster

Radiation Hardening

[2] M. Ferrero

Isolation Trench n⁺/p⁺ multiplication region Epi-silicon (p⁻) Support wafer (p⁺) * Junction Termination Edge (JTE) and p-stop are replaced by a single trench. * Reduced inter-pixel region with no gain (

- 5 μm)
 * Arrays with 50 -55 μm anf FF > 85% (compatible with Medipix/Timepix)
- * Same time resolution of standard LGAD
- * Same radiation resistance of standard LGAD

Inter-pixel width measured with laser scan

- LGADs suffer from gain loss at high fluence (>10¹⁴ neq/cm²) due to "acceptor removal" effect
- Carbon co-implantation allows to mitigate the gain-loss and preserve time resolution

							-
							-
							-
2							-
							10
							10
							12

15x15 array for ATLAS HGTD

 Excellent time resolution (< 30ps, for MIP) up to 1.5e15 neq/cm²
 Reduced bias voltage

Radiation Hardening at extreme fluences

[7] V. Sola

GOAL: operate LGADs at fluence > 10^{16} neq/cm² (not possible with the current technology due to: induced defects and traps, change in the bulk doping, gain-loss (acceptor removal)

AC- and DC- Resistive Silicon Detectors

[3] N. Cartiglia, [4] M. tornago [5] M. Mandurrino

- * RSD readout scheme exploits signal sharing among pads to reach high spatial resolution keeping a coarse pad segmentation
- * 100% fill-factor
- Preserve time resolution of LGADs
- * Spatial resolution (sigma) $\sim 13 \ \mu m$ with a 450 μm pitch

AC-RSD with

"cross-shaped" pads

DOPING COMPENSATION: Use the interplay between acceptor and donor removal to keep a constant gain-layer doping density

References

[1] G. Paternoster, EDL 2020, DOI: 10.1109/LED.2020.2991351
[2] M. Ferrero, NIMA 2018, DOI: 10.1016/j.nima.2018.11.121
[4] N. Cartiglia, presented at Trento Workshop (TREDI) 2022
[5] M. Tornago, NIMA 2021 DOI: 10.1016/j.nima.2021.165319
[6] M. Mandurrino, arxiv.org/abs/2111.14235
[7] V. Sola, presented at Trento Workshop (TREDI) 2022