ASTRONOMICAL APPLICABILITY OF COLLOIDAL QUANTUM DOT SHORT-WAVE INFRARED IMAGE SENSOR WITH SCALABLE PIXEL PITCH DOWN TO SUB-2 MICRON

JOO HYOUNG KIM joo.hyoung.kim@imec.be

RESTRICTED

IMEC: INDEPENDENT R&D HUB

SEMICONDUCTOR SCALING AND NANOELECTRONICS FOUNDED 1984 HQ IN LEUVEN, BELGIUM 4500 PEOPLE OF 97 NATIONALITIES >600 PARTNERS 70% OF BUDGET FROM INDUSTRY

MEC

IMEC IMAGING TECHNOLOGIES

ເງຍ

ASTRONOMICAL INFRARED IMAGING

Drag button to views of the Eagle Nebula, 7,000 light years from Earth

Image made with visible light

Image made with infrared

Images: Nasa

BBC

Telescopes cover different parts of the electromagnetic spectrum

TFPD (THIN-FILM PHOTODETECTOR) OPPORTUNITY

CIS visible	TFPD Y-X-UV-Vis–IR	III-V / II-VI / hybrid IR	
 ✓ high maturity ✓ high throughput >6B units/year! substrate: 200-300 mm ✓ low cost singe \$ per camera x no SWIR EQE 0% in SW/IP 	 new technology potentially high throughput monolithic wafer-level flow target substrate: 200/300 mm potentially low cost target: 10\$ - 100\$ (with volume) good SVVIR EQE 	 high maturity low throughput ~10K units/year substrate: 3-4 inch + flip-chip high cost several K\$ per camera high SWIR EQE 80-90% 	
✓ small pixel pitch SotA CIS 0.56 μm	✓ small pixel pitch <2 μm ↓ OPD ↓ OPD ↓ OPD ↓ OPD	× large pixel pitch SotA InGaAs 5 μm	

CMOS ROIC 8" / 12" CMOS ROIC

QD ULTRA-SPECTRALITY FROM Y-RAY TO LONG-WAVE INFRARED

Radiation Spectrum

High energy photon to electrons

Thicker PD detects high-energy photons

I. Park (Ed.) Photodiodes - World Activities in 2011 RESTRICTED

Mater. Adv., 2021, 2, 6744-6767

Ultra-spectrality can be realized by printing different thickness of QD for corresponding color unit pixel

PROCESS DEVELOPMENT

QUANTUM DOT IMAGE SENSOR "MONOLITHIC HYBRID" INTEGRATION

QUANTUM DOT PHOTODIODE CAPTURING \land > 1400 NM IN A 300 NM THICK FILM

QD IMAGE SENSOR SPECTRUM CAN BE CUSTOMIZED WITH TUNING OF THE STACK

(and beyond!)

ເກາຍເ

Pixelation - Wafer Level TFPD Stack Patterning

Post TFPD stack deposition

TFPD stack pixilation demonstrated at wafer level

Post TFPD Pixelation Litho (DUV)

*More details to be shared during VLSI 2022

ເງຍອ

QD image sensor

Readout can be customized for a certain form factor

Size of a VGA array (640x480 px)

Image Sensor Design and Characterization

Customer ROIC designs

- Custom readouts and camera build

- Pixel architecture study for scaling

	ЗТ	СТІА	
Pixel Structure	PD + 3 transistors (RST, SEL, SF)	PD + Amp. with feedback cap. + Buffer and switch	
Pixel scaling	Good	Not good	
Power consumption	Good	Not good (constant biasing for amp.)	
PD bias	Variable → Linearity High voltage → Dark current	Stable Low voltage	
Conversion gain	Good for scaled pixel size	Good for large pixel size	
Read Noise (RN)	Good for scaled pixel size	Additional noise source (amplifier) Good for large pixel size	

Parameter	genl [2020]		gen2 [2021]	Unit		
Pixel pitch	5	1.82	5	μm		
Resolution	768×512	28× 28	768×512	рх		
DR	84	63	82	dB		
FWC	470	16.8	325	Ke ⁻		
J _D	0.3	0.2	3.3	μA/cm²		
RN	33	12	25	e-		
PRNU	1.3	1.8	2.4	%		
λ _{ρεακ}	1400		1450	nm		
EQE		13	40	%		
DR: dynamic range: EWC: full-well capacity: L. dark current density: RN: read noise:						

DR: dynamic range; FWC: full-well capacity; J_0 : dark current density; RN: read noise; PRNU: photo-response non-uniformity; λ_{PEAK} : peak wavelength; EQE: external quantum efficiency

- pixel < 2 μm: enabler for compact (yet hi-res) sensors</p>
- pixel ≥ 5 μm: good for low-light applications

High quality imaging in SWIR Small pixel size \rightarrow compact form factor + more details

Resolution chart image acquired with imec PbS QD1450 sensor

*SotA for InGaAs imagers

CubeSat

TRANSPORT LAYER CONDUCTIVITY VS. BLOOMING

Less conductive (Less laterally mobile), Less Blooming

Blooming Characterization

IEDM (2012): 24.2.1-24.2.4.

I. Spectral: Uniform QD size distribution

3. Electrical: Pixelation, Resistive TL

2. Optical: PD Full Pixelation

Blooming vs. Conductivity of TLs

ເກາຍc

ACTIVATION ENERGY OF 0.41 EV FOUND

MULTIPLE PEAKS SEEN FROM 0.23 EV TO 0.43 EV (MID-BANDGAP ENERGY)

Activation Energy Histogram

ເງຍອ

TFPD image sensor validation

What have we tested?

Benchmarking Validation of the imec camera against an off-the-shelf InGaAs

Security/surveillance (see through sunglasses)

CIS webcam (VIS)

Package inspection (see-through)

QD imager (SWIR)

Food sorting (stones among coffee beans)

QD imager (SWIR)

CIS webcam (VIS)

Lens-free imaging (e.g. microscopy)

Si chip with channels SWIR image

Where is the industry currently?

First products are already coming to market! (and new players entering)

TFPD IMAGE SENSORS

R&D program at imec – technology building blocks

"what's next?"

"how to manufacture?"

"what are the specs?"

ເງຍ

RESTRICTED

QD SENSORS FOR ASTRONOMICAL IR IMAGING

Highly Scalable IR Image Sensor

- Astronomical IR Image Sensor: Observing deeper and older universe
- QD Imager is enabling more scalable astronomical imaging
 - Large pixel number, WF-lv sensing area, High-resolution, Ultra-spectral imager
- Imec QD Imager has shown
 - QD Synthesis to PD stack development
 - Wafer-level process development
 - Imager design and deep-analysis
- Imec has been leading QD Imager innovation at the forefront.

IMEC QD IMAGE SENSOR TRACK RECORD

Press:

- Promotional video: vimeo.com/653649418
- IMVE magazine, 18th Feb 2021, URL: bit.ly/3e4VUUr
- press release (SWIR pixel pitch state-of-the-art: 1.82 µm), 9th Dec 2020, URL: bit.ly/30ypX9y
- imec magazine, Oct 2019, URL: bit.ly/3vCeTfh
- press release (SWIR pixel pitch state-of-the-art: 5 µm), 21st Oct 2019, URL: bit.ly/3aSHgh0

Publications:

- J.H. Kim et al. IEEE Transactions on Electron Devices (2022), DOI: 10.1109/TED.2022.3164997
- V. Pejović et al. IEEE Transactions on Electron Devices (2021), DOI: 10.1109/TED.2021.3133191
- J.H. Kim et al. IISW 2021, paper R40
- V. Pejović et al. IEEE Electron Device Letters 42/8 (2021), DOI: 10.1109/LED.2021.3093081
- P.E. Malinowski et al. Proc. SPIE 11765 (2021), DOI: 10.1117/12.2584144
- **Y.** Li et al., SEMI CSTIC, Symposium IV, Session V (2021)
- **Z. Lin** et al., Proc. SPIE 11632 (2021), DOI: 10.1117/12.2578857
- J. Lee et al., IEDM 2020, paper 16.5 (2020), DOI: 10.1109/IEDM13553.2020.9372018
- J. Lee et al., Proc. SPIE 11407 (2020), DOI: 10.1117/12.2559949
- E. Georgitzikis et al., IEEE Sensors Journal 20/13 (2020), DOI: 10.1109/JSEN.2019.2933741
- E. Georgitzikis et al. ACS Appl. Mater. Interfaces 12/27 (2020), DOI: 10.1021/acsami.0c06781

22

- E. Georgitzikis et al., *IISW2019*, paper R43 (2019)
- E. Georgitzikis et al., Adv. Funct. Mater. 28 (2018), DOI: 10.1002/adfm.201804502
- E. Georgitzikis et al., IEEE Sensors (2018), DOI: 10.1109/ICSENS.2018.8589515
- P.E. Malinowski et al. Sensors 17/2867 (2017), DOI:10.3390/s17122867

Sensors Council

D M Devices

RESTRICTED

ACS APPLIED MATERIALS

embracing a better life