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INTRODUCTION

Measurement Results UdS 2D SPAD UdS 3D SPAD
University of Sherbrooke (UdS) in partnership with Teledyne DALSA Semiconductor (TDS) is developing a
photodetection module based on single-photon avalanche diodes (SPAD) where each pixel is vertically Breakdolwn voltage (V) typ. 221 typ. 243
integrated to a CMOS electronic readout. 3D integration takes full advantage of the digital signal processing Dark Noise Rate (cps/um?) typ. 0.78 typ. 0.0
capabilities of CMOS electronics without compromising the photosensitive area of the detector [1]. Afterpulsing (%) <5 [10 — 15]
For large-area experiments in particle physics, the photon-to-digital converter (PDC) is to be assembled on Photon Detection Efficiency 59 (450 nm) 56 (450 nm)
silicon interposers to prevent thermal expension mismatches at cryogenic temperatures. The PDCs’ peak (% at A)
dlgltallzeq mformahon is managed by a tile controller and sent to the user by means of a silicon photonics Pho(t)on Detection Efficiency 1400 - 740] nm 1400 - 810] nm
communication module. >15%

Single-Photon Timing 33.8 (410 nm) 130.3 (410 nm)
Resolution (ps FWHM at A) 21.8 (820 nm) 68.6 (820nm)

Photon-to-Digital Converters

SPAD Array SPAD Array

*all measurements done at 20°C, V_, = 25%, t,, = 545 ns, typical.
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N r 130.3 ps FWHM
The 3D SPAD technology is based on a frontside illuminated (FSI) TSV-less p*n architecture. The SPAD [ ineeess ) £ : \\‘
and 3D integration processes were developed separately and reported previously [2]. In order to assess T N E S SR S S A e
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the first prototypes at TDS, in parallel to the development of the CMOS readout circuit, 3D SPADs were ' 100
. : . . . . . Wavelength (nm) Time (ps)
first vertically integrated to a mechanical substrate with signal routing.
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The SPAD process relies on 3D integration technologies standard in the semiconductor industry. The « Concentric distribution of mfnd'a” e
SPAD junction profile and trenches are done first (1). Then, the SPAD array frontside is bonded to a the dark noise is caused G5 sees 28863 4163 1660| Max  |21.3E40 1 s ]
handle wafer (2) to act as a mechanical support during the SPAD backside thinning (3). SPAD are 3D- w63 473 10° |
bonded at wafer-level using an eutectic bonding (4). Finally, the handle wafer is removed (5) to reveal the by metal contacts P
SPADs frontside and to make the metal contacts. misalignment during in- 7Es 593 sk 0e3 1063 7263
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4. Al-Ge wafer-to-wafer 3D bonding 5. Handle wafer removal 6. SPAD backend (metal contacts) DISC U SSIO N

» The 3D SPAD technology saw a slight increase in breakdown voltage and photon detection efficiency in

CH ARACTERIZATION METHODS the red spectrum. It is explained in part by the diffusion of the pn junction due to added thermal steps

Single SPADs are characterized using an external readout circuit (quenching circuit - QC). The QC detects during the 3D integration process.

and quenches the avalanche and, after a configurable period (holdoff delay), recharges the SPAD in its « Additionnal thermal steps in the 3D SPAD process also lowers the dark noise rate because it decreases

ready state. the field-enhanced noise generation, helps cristal lattice damage reconstruction and reduces mid-gap

SPADs are either characterized at wafer-level with the QC input channel fixed to a probe or at die-level defect state density.

with wirebonds [4-3].
) Single SPAD wirebonded SPAD wafer-level active probing * Further characterization is underway to assess the increase of the single-photon timing resolution and

afterpulsing.

CONCLUSION

This work demonstrates the TSV-less frontside illuminated 3D SPAD architecture in the context of the in-
development photon-to-digital converter technology. The next major steps include the 3D SPAD integration
with CMOS wafers to achieve 3D PDC prototypes as well as improving the technology readiness level at the

SPADs QC QC  SPADs TDS foundry.
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