

Antimo CAGNOTTA on behalf of CMS muon group

Univ. "Federico II" di Napoli & INFN Napoli E-mail: antimo.cagnotta@cern.ch

Novel GEM foil layout for high-rate particle environment in the CMS ME0 muon detector

THE PHASE-II CMS MUON ENDCAP **UPGRADE**

particle rate expected in the ME0

station[1]

Phase II upgrade of the CMS muon system [2]: **triple-GEM** detectors

- ☐ Space resolution < 500 µrad
- \Box Time resolution < 10 ns
- ☐ **High-rate capability** (expected hit rate up

to 144 kHz/cm²)

The upgrade includes:

- \Box GE1/1, 1.55 < $|\eta|$ < 2.18 Installed
- \Box GE2/1, 1.62 < $|\eta|$ < 2.43 LS3
- \Box MEO, $2.0 < |\eta| < 2.8$

The ME0 ring (18 detectors × 6 layers × 2 endcaps) will be the closest muon station to LHC beam line.

ME0 prototype

GEM technology [1]

- Copper 5 μm
- □ Kapton 50 μm
- \Box Holes density $50 100/\text{mm}^2$

Possible source of gain drop at high rates

- ☐ Ion space charge
- ☐ Drop in voltage difference across GEM foil

A detailed study of rate capability and gain measurements with ME0 prototype needed

Rate measurements

x-ray source current increases

The rate measurement have been performed with a $10x10cm^2$ triple-GEM detector

- □ Gas Mixture: $Ar: CO_2$ 70:30
- ☐ HV board: multi-channel CAEN A1515 (400pA resolution)
- ☐ Shielding layers to emulate **ME0 budget material**
- ☐ Source: two **silver-target Amptek Mini-X tubes**
- \square Readout: **Keithley 6487 picoammeter** (10fAresolution)

20 40 60 80 100 120 140 160 180 200 X-ray Tube Powering Current (μA)

Particle flux obtained by the linearization of anode current

Rate from linearized anode current

$$\mathbf{R} = \frac{I_{linearized}(P_{Xray})}{q_e n_e g_{nominal}}$$

Where,

 $n_e = \#$ primary electrons $g_{nominal} = nominal$ detector gain measured at very low flux $(2x10^4)$

Gain measurements

Gain measurements on ME0

prototype

Particle Flux in ME0 Station (MHz/sector) Gain measurements with the two different methods

CMS Muon R&D

Two different methods

- 2. at very low flux rate:
- $V_{eff} = V_{set} I_{mon} R_{protection}$

where I_{mon} is the current read by A1515 board at high flux rate.

- ☐ The drop of gain is mainly due to voltage drop
- ☐ The effective gain measurement at different particle flux rate has been performed on a MEO protype detector, irradiating separatly different eta partitions

Gas gain uniformity

The μ/σ is proportional to gain variation

Longitudinal segmentation (GE1/1 and GE2/1) $\frac{\mu}{-}=25\%$

Azimuthal segmentation (MEO) $\frac{1}{1} = 10\%$

Gain compensation

- compansate the voltage drop (V_{set} is the previous value and I_{mon} current from CAEN Board).
- □ **Next**: irradiation test at GIF++

Efficiency study

CERN-0002 prototype detector

- ☐ Results from October2021 test beam
- ☐ More on the setup <u>A.Pellecchia poster</u>

References

[1] F. Sauli, "GEM: A new concept for electron amplification in gas detectors", Nucl. Instrum. Meth. A 386 (1997) 531

[2] CMS Collaboration, "The Phase-2 Upgrade of the CMS Muon Detector", cds.cern.ch/record/2283189/ .

15th Pisa meeting on advanced detectors