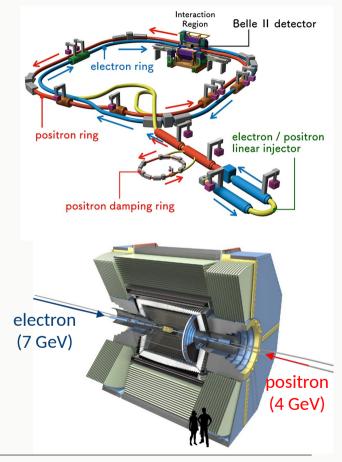


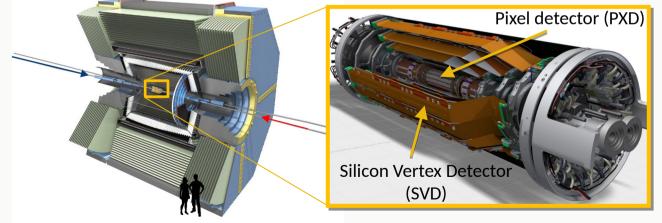
Christian Wessel (wessel@physik.uni-bonn.de) University of Bonn

On behalf of the Belle II VTX collaboration

CMOS MAPS UPGRADE FOR THE BELLE II VERTEX DETECTOR


Pisa Meeting on Advanced Detectors 24.05.2022

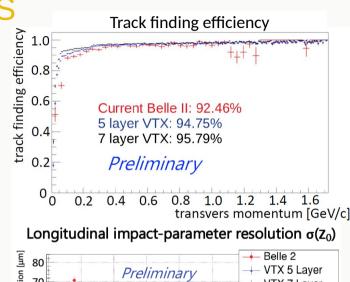
Belle II experiment at the SuperKEKB collider in Tsukuba, Japan

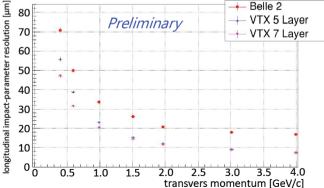

- Luminosity frontier experiment
- Asymmetric e^+e^- collider at 4 / 7 GeV and \sqrt{s} = 10.58 GeV
- Target integrated luminosity of 50 ab⁻¹
- Target instantaneous luminosity of 6x10³⁵ cm⁻² s⁻¹
- Nano beam scheme:
 - Small beam spot size
 - High collision rates
 - Occupancy due to beam background dominates on innermost layers

- 2 layers of PiXel Detector (PXD)
- DEPFET sensor @ 14 and 22 mm
- 50 x 55-85 μ m² pixel size
- 20 μs integration time,
 10 μm impact parameter resolution

- 4 layers of Silicon Vertex Detector (SVD)
- Double-sided silicon strip detector (DSSD)
- Radii of 39, 80, 104, 135 mm
- ⁻ Strip pitch of 50/75 μ m (r- ϕ) and 160/240 μ m (z)
- 8 μm spatial resolution on innermost layer,
 3 ns cluster time resolution

Poster on SVD by C. Irmler

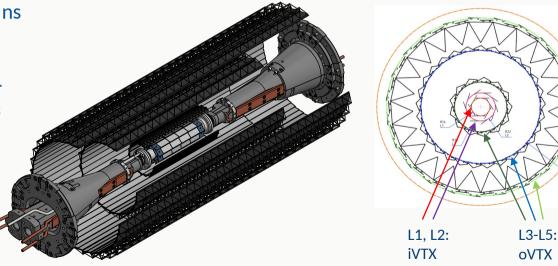



BELLE II UPGRADE PLANS

- SuperKEKB upgrade during LS2 in 2026/2027
- Redesign of interaction region
- Opportunity to install new vertex detector
- Belle II Upgrade Program presented by J. Baudot on Monday

Motivation for a new vertex detector

- **Occupancy** of up to 3% due to high backgrounds
- PXD is not included in track finding
 - $\rightarrow\,$ potentially missing very low $p_{T}\, tracks$
- Smaller pixel pitch + faster integration time
 → reduction in occupancy
- Fully pixelated tracking detector enables pattern recognition



VTX CONCEPT

- VTX: successor to VXD
- Low material budget:
 0.1% X₀ (L1+L2), 0.5% X₀ (L3), 1% X₀ (L4+L5)
- **Depleted Monolithic Active CMOS** pixel sensors
 - $^-~$ 2 x 3 cm², pixel pitch of 30-40 μm^2
 - Fast integration time of 25-100 ns
- Radiation levels for L1 at 14 mm
 - TID: about 10 Mrad / year
 - NIEL: about 5x10¹³ n_{eq}/cm²/year
 - Hit rate of about 120 MHz cm⁻²

- 5 straight **fully pixelated** barrel layers
- Same sensor type for all layers
- iVTX: innermost 2 layers, self-supported, air cooled
- oVTX: 3 outer layers, CF structure, water cooled
- Power dissipation of about 200 mW / cm²

UNIVERSITÄT BONN

TJ-MONOPIX2 FEATURES

TJ-Monopix developed for ATLAS, meets Belle II requirements

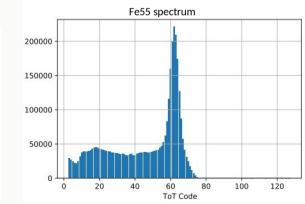
80

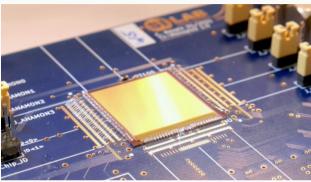
20

400 500

- Small fill factor, fast integration time of 25 ns
- TJ-Monopix2 is next iteration
- $2x2 \text{ cm}^2$ chip with 33 x 33 μm^2 pixels
- Large matrix of 512 x 512 pixels
- Testing in Bonn: Chip is alive and working
- Testbeam at DESY in June 2022

Hitmap


100


200 300

400 ·

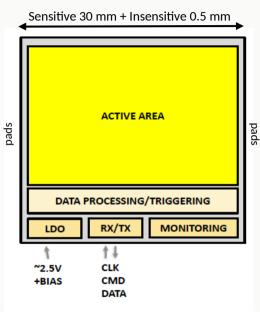
200 -

100 -

TJ-Monopix2: Proof-of-principle prototype of Belle II VTX

TJ-Monopix2	
Chip size	2x2 cm ² (512x512 px)
Pixel size	33.04 <i>x</i> 33.04 μm ²
Total matrix power	170 mW/cm^2
Noise	$< 8 e^{-}$ (improved FE)
LE/TE time stamp	7-bit
Threshold dispersion	$< 10 e^{-}$ rms (improved FE + tuning)
Minimum dispersion	$< 200 e^{-1}$
In-time threshold	$< 250 - 300 e^{-1}$
Efficiency at $10^{15} n_{eq}/cm^2$, 30 $\mu { m m}$ epi	> 97 %
Efficiency at $10^{15}n_{eq}/cm^2$, Cz	> 99 %
	Expectations

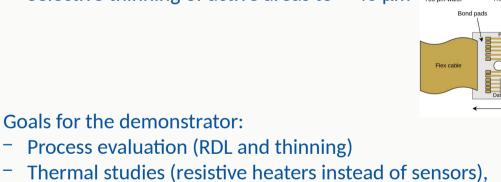
CMOS MAPS upgrade for the Belle II Vertex Detector

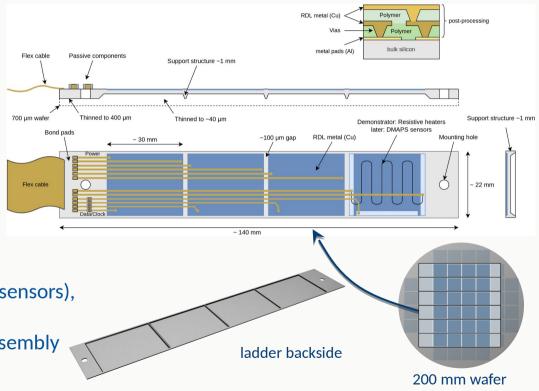


TOWARDS BELLE II: OBELIX

Target: first complete prototype **OBELIX-1** fabricated in 2022

- Digital design starting
- Analog design still under organisation
- Reminder of guidelines:
 - Keep pixel matrix core from TJ-Monopix2 but
 - Enlarged for sensitive width of ~3 cm along z
 - Possible pitch increase to 40 µm if beneficial for robustness against electrical noise
 - Adapt digital logic to Belle II triggering
 - Short integration time < 100 ns and trigger rate of 30 kHz
 - \rightarrow limit the data throughput to \sim 320 Mbps
- Sensor layout and powering
 - Baseline matrix powering sticks to TJ-Monopix2 with additional on-sensor regulators
 - $\rightarrow \sim 500 \,\mu\text{m}$ insensitive gaps on the side
- Power dissipation
- Decreasing timing resolution from 25 ns to 100 ns to mitigate power dissipation from clock propagation within matrix
 - \rightarrow Dissipation closer to $\sim 200 \text{ mW/cm}^2$ expected





IVTX DEMONSTRATOR

- All-silicon ladder
- Single piece of silicon
- 4 sensors per ladder
- RDL for data and power
- Selective thinning of active areas to \sim 40 μ m

- - mechanical stability
- Signal quality, power delivery, component assembly

UNIVERSITÄT BONN

IVTX THERMOMECHANICS

- Multichip CMOS thinned ladders produced with different thickness and geometries
- First ladders characterised: homogeneous thickness over 10 cm² area (with some outliers)

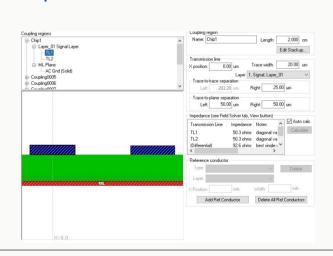
Planarity

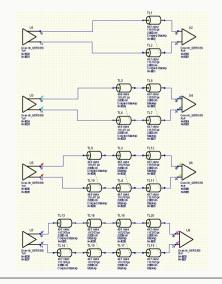
Length/Width

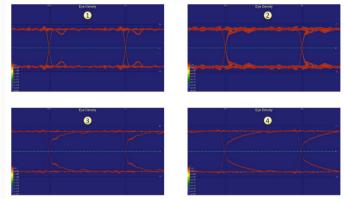
Center

CMOS MAPS upgrade for the Belle II Vertex Detector

0.0176

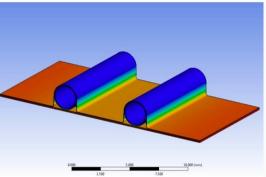

71.0638 ± 0.0009 15.9730 ± 0.0016




IVTX TRANSMISSION LINES

- First studies based on IZM post-processing options Simple models of the geometry:
- Layer stack, transmission lines, schematic
- Atennuation, eye opening

 \rightarrow Output driver model of OBELIX

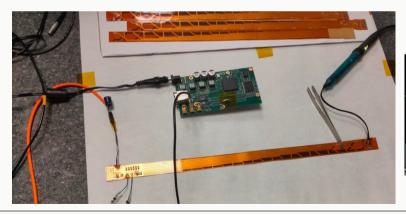

Eye diagrams for 1...4*3 cm trace length. PRBS-15 @640 Mbps

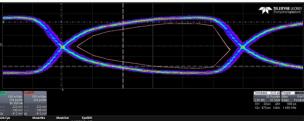


OVTX THERMOMECHANICS

oVTX concept: sensors glued to a support structure ("truss")
Cold place concept for L3-L5, evolving from ALICE frame, in production
Material budget for L3-L5: 0.5 - 1.0 % X₀ (preliminary)
First prototype L5 truss assembled (70 cm long, 5.8 g)
→Thermomechanical characterisation about to start

Modified Cold Plate – M55J+Carbon Paper





First prototype of the low power and signal bus available **Testing ongoing**:

- Verification of signal integrity at the far end
- Estimation of BER at 160 Mhz

eye diagram @250 MHz (500 Mbit/s)

- Belle II experiment considers a vertex detector upgrade in 2026/2027
- All-layer monolithic vertex detector upgrade (VTX): more performant and resilient against higher machine backgrounds
- Target specs in terms of material budget, spatial resolution, and integration time window seem reachable
- Baseline technology: **small collection node monolithic sensor**, evolving from TJ-Monopix2
 - Chip alive and looks healthy
- **OBELIX**: first steps towards a Belle II CMOS sensor **submission in 2022**
- Thermomechanical and electrical mockups of inner and outer layers in the making
- Preparing for CDR submission end of 2022
- Also check the poster on simulation results using the VTX by L. Massacesi

THANK YOU FOR YOUR ATTENTION!