Superconducting Detector Arrays for Cosmic Microwave Background Measurements

Michael Niemack, Cornell University Physics and Astronomy Departments 15th Pisa Meeting on Advanced Detectors – May 26, 2022

Primary CMB Anisotropies

Primary CMB anisotropies contain signatures of early universe physics

Power spectrum

$$\delta T(\theta, \varphi) = \sum_{l,m} a_{lm} Y_{lm}(\theta, \varphi)$$

$$C_l = \frac{1}{2l+1} \sum_m \left| a_{lm} \right|^2$$

ACDM 6 parameter model $\Omega_{\rm m}h^2$, $\Omega_{\rm b}h^2$, Ω_{Λ} , τ , $n_{\rm s}$, $\Delta_{\rm R}^2$

Current CMB Survey Research

Temperature & Polarization Power Spectra

Polarization Anistotropies

Curl free 'E-modes'

Divergence free 'B-modes'

SPT – 10m

Current & Future CMB Survey Research

(CMB-S4 Science Book, arXiv:1610.02743)

~ 10¹ meters

Atacama Cosmology Telescope (ACT)

~ 1 meter

08553

.

Feedhorn array

~ 10⁻¹ meters

Detectors versus Time

Year

Number of detectors deployed by instrument/project Superconducting Detector Arrays 10⁵ Semiconductor Detectors 10⁴ ACT 10³ 10² ★ Planck +WMAP 10^{1} COBE 10⁰ 1990 2000 2010

~ 10⁻² meters

Background-limited superconducting detectors

~ 10⁻² meters

sky brightess temperature [K]

~ 10⁻³ meters

Superconducting Transition Edge Sensors (TES)

– Voltage biased at superconducting transition, T_c

Superconducting Transition Edge Sensors (TES)

- Sub-Kelvin operation
- Voltage biased at superconducting transition, T_c
- Low-T current readout => SQUIDs

g transition, T_c UIDs

SQUID Multiplexing for large TES Arrays

Different signal modulation techniques

- Time-division multiplexing (Chervenak et al., APL 1999) Current Advanced ACT arrays ~6000 detectors
 - Mature approach
 - => Adopted for CMB-S4 >500,000 detectors observations starting ~2030

 GHz Frequency-division multiplexing Simons Observatory arrays ~60,000 detectors observations starting 2023! (McCarrick et al. ApJ 2021)

(Henderson et al., SPIE 2016)

lext Generation CMB Experimen

Michael Niemack, Cornell

SQUID Multiplexing for large TES Arrays

Different signal modulation techniques

• Time-division multiplexing (Chervenak et al., APL 1999) Advanced ACT array with 64x multiplexing

CMB-S4 arrays – need to fold readout behind array to fit many arrays side-by side

CMB-S4 Collaboration – <u>**cmb-s4.org</u>**</u>

(Henderson et al., SPIE 2016 Choi et al., JLTP 2018)

SQUID Multiplexing for large TES Arrays

- Difference frequency for each TES
- 2 coax + 2 twisted pair
- 910x multiplexing factor
- Fewer wires than time-division, though focal plane integration with TESes is still a challenge

GHz frequency-division multiplexing

SQUID Multiplexing for larger TES Arrays

Kinetic Inductance Detectors for larger arrays

Cooper

Pair

- Newer detection approach
 - Use kinetic inductance of superconductor
 - Circuit resonance changes due to pair breaking

(Day et al. Nature 2003)

- Naturally multiplexable \bullet
 - Frequency comb like microwave SQUIDs
- More detectors at shorter (< 1 mm) wavelengths due to ~100x fewer wirebonds!

$$R = \frac{1}{2.355} \sqrt{\frac{\eta h\nu}{F\Delta}}$$

Kinetic Inductance Detectors for larger arrays

CCAT-prime (<u>ccatobservatory.org</u>) adopted KIDs to be deployed in 2024! Planning for > 100,000 KIDs

(Duell et al. SPIE 2020 – First CCAT-prime array with 3456 KIDs!)

Telescopes for CCAT-prime and Simons Observatory

... to illuminate ~10x more detectors are being built in Germany!

Wrap up

- Feedhorn coupled Transition Edge Sensor (TES) detectors are achieving background-limited performance on <u>ACT</u> and others
- Need more detectors to improve CMB measurements
- TESes will be used in **Simons Observatory and CMB-S4** ${\color{black}\bullet}$
 - Simons Observatory using frequency-division readout in 2023 telesco
 - **CMB-S4** using time-division readout ir

- Kinetic Inductance Detectors (KIDs) enable mc tectors per wafer ${\bullet}$ at wavelengths less than ~1mm and will be used in CCAT-prime
 - **CCAT-prime** using KID arrays in 2024

Michael Niemack (niemack@cornell.edu), Cornell