

New results of the technological prototype of the CALICE highly granular silicon tungsten calorimeter

Vincent Boudry

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Vincent.Boudry@in2p3.fr

15th Pisa meeting on Advanced Detectors | Isola d'Elba | May 2022

AIDA

Particle Flow Detectors at Higgs Factories

Basis: sep of H → WW/ZZ → 4j – $\sigma_z/M_z \sim = \sigma_w/M_w \sim = 2.7\% \oplus 2.75\sigma_{sep}$ ⇒ σ_z/E (jets) < 3.8%

Large Tracker

- Precision and low X₀ budget
- Pattern recognition

High precision on Si trackers

- Tagging of beauty and charm

Large acceptance

Fwd Calorimetry:

- lumi, veto, beam monitoring

Imaging Calorimetry

Vincent.Boudry@in2p3.fr

H. Videau and J. C. Brient, "Calorimetry optimised for jets," (CALOR 2002)

Particle Flow ECAL should : spot tracks & showers from charged (h^{\pm} , e^{\pm}) measure Photons in jets & Tau physics ($\gamma vs \pi_0$) measure 2/3 of neutral hadrons interacting in the ECAL measure Time-of-Flight (10's ps)

An Ultra-Granular SiW-ECAL for Higgs Factories

Particle Flow optimised calorimetry

- Standard requirements
 - Hermeticity, Resolution, Uniformity & Stability (E, (θ , φ), t)
- PFlow requirements:
 - Extremely high granularity : 5×5 mm² × 30 layers
 - Compacity (density)
- Technical requirements:
 - Electronics & Service Integration (power, cooling, ...)
 - Scalability : $\mathcal{O}(100M)$ channels $\Rightarrow \mathcal{O}(100k)$ boards

Vincent.Boudry@in2p3.fr

SiW+CFRC baseline choice for future Lepton Colliders: (ILC/ILD, CLIC/det, FCC-ee/CLD, CEPC/Baseline)

- Tungsten as absorber material
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_1 = 96 \text{ mm}$

Narrow showers

- Assures compact design
- Silicon as active material
 - Support compact design: Sensor+RO≤2mm
 - Integration with Very-Front End Electronics
 - Allows for ~any pixelisation
 - Robust technology
 - Excellent signal/noise ratio: ≥10
 - Intrinsic stability (vs environment, aging) Albeit expensive...
- Tungsten–Carbon alveolar structure Minimal structural dead-spaces Scalability

To be assessed

by prototypes

(40+24)

× 45

Full Det (2035?)

70M channels

30 years

4/30

Detector slab (x30)

Physical (2005-11)

- 1×1 cm² on 500µm 6×6 cm²
 Pad glued on PCB
 Floating GR
- × 30 layers (10k chan).
- External readout
- Proof of principe

Technological (now)

- Embedded electronics
 - Power-Pulsed, Auto-Trig, delayed RO
 - S/N = (MPV/ σ_{Noise}) $\geq \sim 12$ (trig)
- Compatible w/ 8+ modules-slab
- 5×5 mm² on 320–650µm 9×9 cm²
 × 26–30 layers
 - 8k (slab) ~ 30k (calo) channels

We are

- here
- Final ASIC (Ωmega SK3 ?)

- Full integration (\supset cooling)

Pre-industrial building

– on 750µm 12×12 cm² 8" Wafers ?

x 2

- 1M

Pilote (2027?)

'dead space free' Carbon Fibre-W

Structure

Vincent.Boudry@in2p3.fr

MEGA Microelectronics SKIROC2 / 2A Analogue core

- 64 channels
- Auto-triggered
 - per cell adj.
 - 1 cell triggers all
- Preamp
 - + 2 Gains + Auto-select + TDC (~1.4ns)

- 15 (×2) analogue memories
- Dyn range 0.1 ~ 2500 mips
 - mip in 320 µm (4 fC)
 - 12 bits ADC's
- 616 config bits
- Low consumption
 - 25 μW/ch with 0.5% ILC-like duty cycle
- Power-Pulsed

Vincent.Boudry@in2p3.fr

FEV's : 15 years of R&D

Most complex element: electro-mechanical integration

- Powering, Distrib / Collect signals from ASICs, Analog & Digital with dyn. range ≥ 7500
 - Single End operation → Chaining for 8–10 boards
- Mechanical placer & holder for Wafers→ ≤ 50µm lateral precision, flatness
- − Thickness constraints → Calorimeter Compactness

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, ≤ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st PCB proto	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	S/N ≤ \sim 14 (H Gain), no Power Pulsing retriggers 50–75%
1 st run in PP	2013	FEV8-CIP		BGA, Power Pulsing
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (H Gain) retrigger ~ 50%
1 st SLABs	2016	FEV11	10 units	Noise issues
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig,} 6–8 % masked
1 st technological ECAL	2018	FEV11, 12 13 Compact Calo Long Slab	SK2 & SK2a (⊃timing) 8 ASUs	Improved S/N Timing enabling
1 st working COB, new DAQ	2019	FEV-COB	2×1/4 ASUs Cont. power.	Technical
2 nd tech ECAL	20– 22	5 types FEV's	H. Gain, Cont. Power	320, 500, 650 µm

ectors | Isola d'Elba | May 2022

Present 'FEV-zoo'

FEV10, 11, 12

- BGA packaging
- Incremental modifications
- From v10 -> v12
- Main "Working horses" since 2014

FEV-COB

- Chip-On-Board : ASICs wirebonded in cavities
 - Thinner than FEV with BGA
- Based on FEV11
 - External connectivity compatible

FEV13

- BGA packaging
 - Improved routing
 - Local power storage
 - Different external connectivity

Vincent.Boudry@in2p3.fr

Compact DAQ readout

"Dead space free" granular calorimeters → ~ 30 mm space ECAL–HCAL

- Compact DAQ
- in use in BT since 2019

LabWindows + scriptings

- Full debug system
- ➡ EUDAQ
 - Combined running

Beam Test at DESY-II Nov. 2021 + March 2022

DESY offers low-energetic beams of 1-6 GeV (e⁻, e⁺)

- 15 layers with 1024 readout cells each
 - 5.5 mm Si pads

4 weeks in total

- ~3 weeks of commissioning and "training"
 - Mechanical structure (adding or removing the tungsten plates)
 - New and continuously improving DAQ and online monitoring tools
 - New semi-online monitoring tools
 - Hold values, gain optimization, Threshold optimization, single cell calibration, etc

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

Vincent.Boudry@in2p3.fr

Prototypes

November 2021

 Tungsten absorbers : 11 × 2.1 mm (0.6 X₀) + 3 × 4.2 mm (1.2 X₀) total 10.2 X₀

Vincent.Boudry@in2p3.fr

March 2022

 Tungsten absorbers : 7× 2.8 mm (0.8 X₀) + 8 × 4.2 mm (1.2 X₀) total 15.2 X₀

Vincent.Boudry@in2p3.fr

Noise studies

SKIROC2

- 1 hit (E_{chan}≥Thr.), 64 readouts
- − Sparse showers ⇒ many noise cells
- Coherent vs Incoherent noise sources
 - https://arxiv.org/pdf/1401.7095.pdf

Coherent noise source identification in multi channel analysis

T. Frisson^{*1} and R. Poeschl¹

¹Laboratoire de L'accélerateur Linéaire (LAL), CNRS/IN2P3, Orsay, France

Analysis of collective Gaussian noise sources by correlation between channels

3 GeV electron shower

$$\sigma_i^2 = \sigma_{I_i}^2 + \sum_{j=1}^{N_c} \sigma_{C_i^j}^2$$
(1)

The covariance matrix element from the two channels **i** and **k** is expressed by:

$$cov(i,k) = \delta_{ik}\sigma_{I_i}\sigma_{I_k} + \sum_{j=1}^{N_c} \sigma_{C_i^j}\sigma_{C_k^j}$$
(2)

where:

 $\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$ (3)

The covariance matrix element can also be determined from the data:

$$cov_{Data}(i,k) = \frac{\sum_{n=1}^{N_{event}} (A_i(n) - \mu_{A_i})(A_k(n) - \mu_{A_k})}{N_{event}}$$
(4)

Vincent.Boudry@in2p3.fr

15 layers ×1024 ch ×15 mem = 230k fits

MIP ~ 70–140 adcc

Vincent.Boudry@in2p3.fr

Pedestal widths, 1st memory cells, per asic

- (Average ± Standard Deviation) of Sigmas for all 64 channels in the same chip
- Latest PCBs, with optimized routing of power distribution shows better behavior
- Slightly larger spread on COB due to a near lack of decoupling capacitors

Layer 7: FEV12 SK2a, 500 µm

Incoherent noise, Pedestal_run_050571_injection_merged

Legend

- 1) Pedestal map
- 2) Incoherent noise map
- 3) coherent noise map (c1)
- 4) coherent noise map (c2)

Outcomes:

- Few channels are off
 - These are usually seen as noise sources (FEV10/11/22)
- Routing issues
 - addressed in next generation

Reminder: Noise is THE enemy of local selftriggering with local storage FE readout.

Vincent.Boudry@in2p3.fr

Mips response : no tungsten

Vincent.Boudry@in2p3.fr

MIP calibration

Vincent.Boudry@in2p3.fr

We have good layers ...

- Homogeneous response to MIPs over layer surface
- · Here white cells are masked cells due to PCB routing
 - Understood and will be corrected

- ... and not so good layers
- Inhomogeneous response to MIPs
 - Partially even no response at all, in particular at the wafer boundaries
 - To be understood, may require dedicated aging studies

100

- Have since last week access to the different stages of the ASICs
- => major debugging tool
- In any case less good layers will be replaced in coming months

Simulation

Done in DD4HEP framework (G4 overlayer)

- very flexible XML configuration
- derived from ILC soft

Digitization:

- Mimicking of the SKIROC2 ASICs

Shaping in Fast and Slow Branch

- MIP calibration in both branches
 - as in data
- Application of thr. on Fast B,
- → Delay for Slow B. readout
 Parameters being adjusted on data

Vincent.Boudry@in2p3.fr

Electron Showers

Vincent.Boudry@in2p3.fr

First look at in-shower spectrums (3 GeV)

MIP & Threshold calibration in-shower possible

... but requires a level of noise performance

Vincent.Boudry@in2p3.fr

3 GeV Raw Hit Shower profiles - in High Gain

Escale $\rightarrow \leq \sim 40$ mips / cells

Vincent.Boudry@in2p3.fr

Gain adjustment

Preamplifier Gain 1.2 pF / 6 pF ~ × 4.73

Vincent.Boudry@in2p3.fr

Next steps

Beam test at CERN (June 22)

Preparation:

- Integration of more FEV13
- Commissioning with 6pF
 - Cosmics data taking on-going
- Increased W integration : 18.4 X₀

Finalising and testing the design of next gen FEV

- Improvement on power and signal routing
 - → better chaining, less induced noise
 - → more flexibility

Vincent.Boudry@in2p3.fr

Outlook

First Beam Tests (after 2 years of COVID)

- 1st test of a complete stack of the SiW-ECAL:
 - 15 layers (albeit heterogenous)
 - Two set-up 10.2 $X_{\rm 0}$ and 15.2 $X_{\rm 0}$

Training and Running phase

- New Compact DAQ (15 layers)
- Thin design (COB) operationnal
- Noise and Gain optimisations on particules
- Most Layers operated as expected
 - some noiser, some quieter
 - Signs of conductive glue aging (wafer-PCB)

Low energy electrons:

- Punch-though ⇒ MIP spectrums
 - MIP Calibration on-going
- Electron showers structure
 - First plots of resolution (not shown):
 - Correction of defects (masking, aging) need to be integrated.

To come:

- Adiabatic Increasing difficulty (Gain ⊾, Compactness ⋆)
- High Energy electrons (and Hadron): CERN June 22
- New FEV, with BGA design

Vincent.Boudry@in2p3.fr

Thank you for you attention

Thanks to

H. García, J. Kunath, F. Jimenez, Y. Okugawa, A. Irles, R. Poeschl, T. Suehara, S. Callier and many others for material and inspiration for this talk

Thanks to the engineering teams of IJCLab, LPNHE and LLR and to the Beam Test coordinators at DESY

Vincent.Boudry@in2p3.fr

Detector Commissioning on MIPs: max of shape

Mip analysis

Parameters

FEV2.0

Requirements

- Compatible FEV10,11,12
 - 16 ASICs
 - 4 Matrices 6", 1024 chanels
- Improved mecanics, scalability & maintenance
 - Connectors
 - HV distribution & Filtering on PCB
 - 1 HV per card \Rightarrow independent test, exchangeabil
- LV Regulation on board with LDO
 - local Power-pulsing, lower currents (in B-field)
- Corrected data & clock distributions
 - Must be OK for 2,1 m (EndCaps) = 8 FEV
 - Timing $\leq 0,1$ ns ? \rightarrow for SK3 ?
- Compatibility new DAQ
- Improved noise & decoupling

15th Pisa meeting on Advanced Detectors | Isola d'Elba | May 2022

Vincent.Boudry@in2p3.fr

Layout optimizations

Digital lines optimized for long SLAB

Insulated input signals with GND ring

All patterns of input signal are identical

Board finished 45%

- 5% for LDO power
- 50% for partition duplication

nanni@llr.in2p3.fr