

Roberto Dinapoli :: PSD Detector Group :: Paul Scherrer Institut

MYTHEN-III, a high performance, single photon counting strip detector

15th Pisa meeting on advanced detectors 22-28.05.2022

- Several applications in Photon Science (PS) are 1D do not require pixels
- 1D ASIC design less challenging
- Smaller ASIC required
- Simpler control/readout logic
- Less channels per area
 - Faster frame rate
 - Smaller data throughput
 - Resources much less critical
- Wire- instead of bump- bonding
 - Cheaper
 - Smaller pitches possible
 - Simpler
- Playground for new ideas
- Up-to-date ASICs required

– Easier, cheaper, faster

MYTHEN II (2007-present)

Schmitt,et al, Nucl. Instr. Meth. Phys. Res. A 501 (2003), 267-272

Roberto Dinapoli

Mythen III for powder diffraction

- Same sensors as Mythen II: 1280 strips/module, 50 µm pitch, 8 mm length
- 120 degrees on two rows without gaps (24 x 2 modules)
 - -76 cm distance from diffractometer center
 - -4 mdeg intrinsic angular resolution
- Sensor material and characteristics can be changed (e.g.LGADs, HighZ)

MY₃ design specifications

Modes of operation

The chip can work in different modes of operation:

- 1. Normal counting mode
 - a) My2 equivalent
 - b) With energy windowing
 - c) With multi-threshold rate correction
- 2. Pump-probe mode
- 3. Time over threshold
- 4. Interpolation mode
- 5. Improved performance in pulsed mode
- 6. Analog pulsing mode
- 7. Digital pulsing mode
- 8. Trim bits load mode
- 9. Chip status load

Modes of operation

The chip can work in different modes of operation:

- 1. Normal counting mode
 - a) My2 equivalent
 - b) With energy windowing
 - c) With multi-threshold rate correction
- 2. Pump-probe mode
- 3. Time over threshold
- 4. Interpolation mode
- 5. Improved performance in pulsed mode
- 6. Analog pulsing mode
- 7. Digital pulsing mode
- 8. Trim bits load mode
- 9. Chip status load

Trivial

15th Pisa Meeting

Not tested

TRIMMING Reduce threshold dispersion from 123 e- untrimmed to < **6e**trimmed

TRIMMING Reduce threshold dispersion from 123 e- untrimmed to < 6etrimmed

TEMPERATURE STABILITY More pronounced in high-gain (slow) settings

Change in gain: ~0.3% /°C

Maximum readout speed: 390 kHz in 8bit and dead-time free mode
 Time resolved experiments e.g. : In situ multilayer reacting foils

Maximum readout speed: 390 kHz in 8bit and dead-time free mode
 Time resolved experiments e.g. : In situ multilayer reacting foils

> Selection of the characteristic line, synchrotron higher harmonic suppression

> Selection of the characteristic line, synchrotron higher harmonic suppression

Pump-Probe configuration

- Stroboscopic measurements with up to 3 temporal counting slots
 - Pumped-unpumped measurements with isolated/sliced bunch

Pump-Probe configuration

Time-over-threshold operation with int. oscillator

• Two comparators, one generates clock. One counter: internally clocked if signal >Vth.

Time-over-threshold operation with int. oscillator

• Two comparators, one generates clock. One counter: internally clocked if signal >Vth.

same as energy windowing

- Rate scan with 3 thresholds to track pile-up
- Pile-up model: (paralyzable)

$$\begin{aligned} \epsilon_1(\phi_0) &= e^{-\phi_0 \tau_d} \\ \epsilon_2(\phi_0) &= e^{-\phi_0 \tau_d} \cdot (1 - e^{-\phi_0 \tau_d}) \\ \epsilon_3(\phi_0) &= e^{-\phi_0 \tau_d} \cdot (1 - e^{-\phi_0 \tau_d}) \cdot (1 - e^{-\phi_0 \tau_d}) \\ \epsilon_{sum} &= \epsilon_1 + \epsilon_2 + \epsilon_3 > \epsilon_1. \end{aligned}$$

- Model total efficiency as sum of 3 counters
- Fit with paralyzable model \rightarrow dead time τ_d (1 to 3 counters)

15th Pisa Meeting

Roberto Dinapoli

- Rate scan with 3 thresholds to track pile-up
- Pile-up model: (paralyzable)

$$\begin{aligned} \epsilon_1(\phi_0) &= e^{-\phi_0\tau_d} \\ \epsilon_2(\phi_0) &= e^{-\phi_0\tau_d} \cdot (1 - e^{-\phi_0\tau_d}) \\ \epsilon_3(\phi_0) &= e^{-\phi_0\tau_d} \cdot (1 - e^{-\phi_0\tau_d}) \cdot (1 - e^{-\phi_0\tau_d}) \\ \epsilon_{sum} &= \epsilon_1 + \epsilon_2 + \epsilon_3 > \epsilon_1. \end{aligned}$$

- Model total efficiency as sum of 3 counters
- Fit with paralyzable model \rightarrow dead time τ_d (1 to 3 counters)

- Determine dead time and noise

 If gain ↑ : noise ↓ and dead time ↑
- Calculate rate per strip at 90% efficiency: $-\varepsilon_{sum} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$

settings	1 counter	3 counters	
Slow	1.3 MHz	7.4 MHz	
Medium	1.4 MHz	8.2 MHz	
Fast	3.5 MHz	20.9 MHz	

Minimum achievable noise: 110 e- rms (not shown)

- Determine dead time and noise
 If gain ↑ : noise ↓ and dead time ↑
- Calculate rate per strip at 90% efficiency: $-\varepsilon_{sum} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$

settings	1 counter	3 counters
Slow	1.3 MHz	7.4 MHz
Medium	1.4 MHz	8.2 MHz
Fast	3.5 MHz	20.9 MHz

 \rightarrow Meets requirements for SLS 2

Minimum achievable noise: 110 e- rms (not shown)

- Inter-strip communication between neighbors
- Redistribute counts: left, central, right counter
- \rightarrow Virtually split strips \rightarrow better resolution

15th Pisa Meeting

Roberto Dinapoli

Interpolation: Siemens star

- Imaging with 1D detectors: thin slit in front of detector, scan sample, 25 μm steps in vertical
- External pitch of star: 60 μ m, 2 mm diameter

12.6 keV beam

- Imaging with 1D detectors: thin slit in front of detector, scan sample, 25 μm steps in vertical
- External pitch of star: 60 μ m, 2 mm diameter

 \rightarrow Impossible to resolve spikes (in horizontal) in normal mode

Interpolation: Siemens star \checkmark

12.6 keV beam

- Imaging with 1D detectors: thin slit in front of detector, scan sample, 25 µm steps in vertical
- External pitch of star: 60 μ m, 2 mm diameter

 \rightarrow Impossible to resolve spikes (in horizontal) in normal mode

- \rightarrow Distinguishable in interpolation mode!
- \rightarrow More quantitative tests are ongoing

- Increase SNR
 - Low Gain Avalanche Detectors (LGADs)
 - Segmented avalanche photodiodes with limited gain, no dark counts
 - -Timing not important for PS
 - Already proven with other detectors SNRx5
 - Ideal for soft X-ray single photon

- Increase SNR
 - Low Gain Avalanche Detectors (LGADs)
 - Segmented avalanche photodiodes with limited gain, no dark counts
 - -Timing not important for PS
 - Already proven with other detectors SNRx5
 - Ideal for soft X-ray single photon

Inverse LGADs with MYTHEN

Inverse LGADs with MYTHEN

- Full detector (120 degrees) currently installed at Material Science (SLS)
 - The detector runs flawless
 - -First experiments ongoing
- Several modules installed as beam monitors (polarization, I0 monitor, position(?))

15th Pisa Meeting

E Summary

MYTHEN II (250nm)	MYTHEN III specs	MYTHEN III (110nm) meas	Lower er detectab
200-250e- ~4.5keV	150-200e- ~3.5keV	110-250e- ~3keV	fluoresce
ca. 25 e-	20e-	6e- 🗸	Better fla
0.1-1 MHz	>2MHz	1 counter: 1.3-3.5 MHz 3 counters: 7.4–20.9 MHz	Higher flu
0.1-1 kHz No	>10 kHz Yes	40-400 kHz Yes	Time resc experime
???	"Good enough"	ca. 0.3%/°C 🗸	Reliable ca
h+	h+/e-	\checkmark	Use with Hig materials or LGADS
1, no logic	3, with counting logic	\checkmark	
	MYTHEN II (250nm) 200-250e- ~4.5keV ca. 25 e- 0.1-1 MHz 0.1-1 kHz No ??? h+ 1, no logic	MYTHEN III (250nm)MYTHEN III specs200-250e- ~4.5keV150-200e- ~3.5keVca. 25 e-20e-0.1-1 MHz>2MHz0.1-1 kHz No>10 kHz Yes???"Good enough"h+h+/e-1, no logic3, with counting logic	MYTHEN II MYTHEN III (110nm) meas 200-250e- ~3.5keV 110-250e- ~3keV 3keV Additional and

15th Pisa Meeting

Roberto Dinapoli

E Summary

	MYTHEN II (250nm)	MYTHEN III specs	MYTHEN III (110nm) meas	Lower energies detectable Better	
Noise Min. Thresh.	200-250e- ~4.5keV	150-200e- ~3.5keV	110-250e- ~3keV	fluorescence suppression Better flat field	
Threshold dispersion	ca. 25 e-	20e-	6e-		
Count rate capability @90%	0.1-1 MHz	>2MHz	<i>1 counter:</i> 1.3-3.5 MHz <i>3 counters:</i> 7.4–20.9 MHz	Higher fluxes	
Frame rate	0.1-1 kHz	>10 kHz	40-400 kHz	Time resolved Standard mode Pump-probe Energy windowing Rate correction Interpolation Time over threshold Pulsed mode	
Dead time free	INO	res	res V		
Temperature stability	???	"Good enough"	ca. 0.3%/°C 🗸		
Polarity	h+	h+/e-	\checkmark		
Counters	1, no logic	3, with counting logic	\checkmark		
15th Pisa Meeting					

Acknowledgements

MS beamline

Nicola Casati

Antonio Cervellino

Photon Science Detector Group Paul Scherrer institut

Wir schaffen Wissen – heute für morgen

My thanks go to PSD detector group

- Bernd Schmitt
- Rebecca Barten
- Filippo Baruffaldi
- Anna Bergamaschi
- Martin Brueckner
- Maria Carulla
- Roberto Dinapoli
- Erik Froejdh
- Dominic Greiffenberg
- Shqipe Hasanaj
- Julian Heymes
- Viktoria Hinger
- Thomas King
- Pawel Koslowski
- Carlos Lopez Cuenca
- Davide Mezza
- Aldo Mozzanica
- Christian Ruder
- Dhanya Thattil
- Jiaguo Zhang

MS beamline

- Nicola Casati
- Antonio Cervellino

...and many collaborators at the beamlines