

T. Peitzmann (Utrecht University/Nikhef) for the EPICAL-2 team

15th Pisa Meeting on Advanced Detectors

0.

Results from the EPICAL-2 Ultra-High Granularity Electromagnetic Calorimeter Prototype

La Biodola, Elba, 25/05/2022

Introduction

- Digital calorimetry: count number of charged shower particles in sampling layers
 - Ideally: potential to reduce fluctuations from individual sampling layers
 - High granularity required due to high particle density
- State-of-the-art all-pixel calorimeter prototype
 - Follow up on proof of principle EPICAL-1 (JINST 13 (2018) P01014)
 - EPICAL-2: Si/W stack using ALPIDE sensors, detailed simulation in Allpix²
- Calorimetric performance from test-beam measurements
 - Detailed study at low energy (DESY)
 - First preliminary results from high energy (SPS)

New Digital Calorimeter Prototype – EPICAL-2

layer cables

interface boards

ALPIDE output via 1.2 Gb/s serial line readout via 2 levels of FPGA

- 3 mm W absorber
- 2 ALPIDE CMOS sensors
 - NIM A, 845:583–587, 2017
- ultra-thin flex cables (LTU Kharkiv)

29.24 x 26.88 μ m² pixel size active cross section 3 x 3 cm²

compact design: expect $R_M \approx 11 \text{ mm}$

readout schematics

detector setup

EPICAL-2 Measurements

- Cosmic muons (Utrecht University, 2020)
- Test beam DESY (Feb. 2020)
 - Electron/positron, E = 1.0 5.8 GeV
- H6 test beam SPS (Sept./Oct. 2021)
 - Mixed beam, E = 20 80 GeV

Allpix² Simulations

- Detailed implementation of ALPIDE sensor and detector geometry
- Good description of detector behaviour

Allpix²: NIM A, 901:164–172, 2018

pixel in x

5

Event Displays

colour \rightarrow layer number

Sensor Calibration

- Use muons (from cosmics or in-beam) for relative calibration of sensors with different sensitivities
 - Expect identical response to muons in all layers in terms of hits and clusters
 - Ignore in-sensor variation of sensitivity
- Significant sensitivity variation observable in number of hits
- Minor variation in number of clusters
 - Number of clusters less susceptible to threshold variations

Detector Response

- Number of hits (N_{hits}) or number of clusters (N_{clus}) usable as response observable
 - Well defined peaks scaling with beam energy
- Allpix² simulation
 - Tuned to number of hits at 5 GeV
 - Very good description for hits at all energies
 - Good description for clusters
 - Sensitive to details of cluster algorithm

Energy Linearity

- Average response as a function of beam energy
 - Described by linear fit ullet
 - Constrained to (0,0) by pedestal measurements
 - Behaviour reproduced by simulation lacksquare
- Small apparent deviations from linearity in ratio
 - Perfect linearity in hits from simulation
 - Hits in data agree with EPICAL-1 ullet
 - Non-linearity in hits strongly influenced by \bullet uncertainty in DESY beam energy
 - NIM A, 922:265–286, 2019
 - Stronger non-linearity from N_{clus} lacksquare
 - Reproduced in simulation
- Response consistent with full linearity at low \bullet energy

- Resolution shows the expected behaviour for calorimeters
- Experimental data likely contain a significant contribution from beam energy spread at DESY
- "Particle counting" (N_{clus}) shows superior performance here
 - Confirmed by simulations

Energy Resolution

- Resolution from hits better than EPICAL-1 results
- Resolution from N_{clus} close to analog SiW ECAL (CALICE) physics prototype NIM A 608:372-383, 2009
- Cluster algorithm not yet optimised lacksquare

Shower Profiles

- Longitudinal and lateral shower distributions show expected behaviour
 - Similar for N_{clus} and N_{hits} lacksquare
- Wealth of information to extract details of shower development: work in progress
- Hit density well below saturation limit at low energy
 - Maximum at 5 GeV: \bullet $\approx 300 \text{ hits/mm}^2$
 - Saturation at 1272 hits/mm²
 - Limit will be reached at high energy: \bullet correction required

SPS H6 Beam Composition

Energy Linearity at High Energy

- Electron peak position (N_{hits}) extracted for different beam energies
- Behaviour at high energy matches well to low energy
- Good linearity at high energy
 - Confirms observed non-linearity at DESY to be related to test beam properties

Energy Resolution at High Energy

14

- Results of preliminary analysis from SPS data: good energy resolution from N_{hits}
 - High energy (SPS) consistent with extrapolation from low energy (DESY)
- Work in progress:
 - N_{clus} seen to yield better energy resolution at low energy, cluster algorithm needs to be adjusted for high energy

Application: Two-Shower Separation

- Longitudinally integrated distribution makes separation challenging
- Much more information available in high-granularity 3D distributions

EPICAL-2 preliminary Allpix² simulation

30 GeV e⁻ + 250 GeV e⁻ 1.2 mm separation single event

n makes separation challenging high-granularity 3D distributions

Application: Two-Shower Separation

- Full pixel detector information very powerful
 - Two-shower separation down to 1 mm should be possible
- Systematic studies to be done

EPICAL-2 preliminary Allpix² simulation

30 GeV e⁻ + 250 GeV e⁻ 1.2 mm separation single event

Summary

- Digital calorimetry works
 - New prototype confirms findings with EPICAL-1
 - Much better performance of EPICAL-2
 - ALPIDE sensor: very low noise, readout speed compatible with modern experiments
 - Technology suitable for ALICE FoCal pixel layers
- Good energy linearity and resolution
 - Study limited by accelerator properties at DESY
 - To be confirmed at high energy preliminary results very promising
- Very strong potential so far "scratching the surface"
 - Use full 3D shower information for single- and multi-particle reconstruction
 - Improved jet measurements?
 - Study performance for particle flow algorithms

EPICAL-2 Team

Nik|hef

J. Alme,^a R. Barthel,^b A. van Bochove,^b V. Borshchov,^c R. Bosley,^d A. van den Brink,^b E. Broeils,^b H. Büsching,^e V.N. Eikeland,^a O.S. Groettvik,^a Y.H. Han,^f N. van der Kolk,^{b,g} J.H. Kim,^f T.J. Kim,^f Y. Kwon,^f M. Mager,^h Q. W. Malik,ⁱ E. Okkinga,^b T.Y. Park,^f T. Peitzmann,^b1 F. Pliquett,^e M. Protsenko,^c F. Reidt,^h S. van Rijk,^b K. Røed,ⁱ T.S. Rogoschinski,^e D. Röhrich,^a M. Rossewij,^b G.B. Ruis,^b E. H. Solheim,^{a,i} I. Tymchuk,^c K. Ullaland,^a N. Watson,^d H. Yokoyama^{b,g}

a Department of Physics and Technology, University of Bergen, Bergen, Norway b Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands c Research and Production Enterprise "LTU" (RPE LTU), Kharkiv, Ukraine d School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom e Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany f Yonsei University, Seoul, Republic of Korea g Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands h European Organization for Nuclear Research (CERN), Geneva, Switzerland i Department of Physics, University of Oslo, Oslo, Norway

