

Development of a hybrid single-photon detector with pixelated anode and integrated CMOS analog and digital front-end

Nicolò Vladi Biesuz for the 4DPHOTON team

European Research Council

15th Pisa Meeting on Advanced Detectors

European Research Council

Overview

- The hybrid detector concept
- The Timepix4 ASIC
- Expected performance
- Design status

The 'hybrid' detector [M. Fiorini et al, JINST 13 (2018) C12005]

We are developing a single-photon detector:

- based on a vacuum tube
- transmission photocathode with high QE in the spectral region of interest
- dual micro-channel plate stack
- a pixelated CMOS read-out anode with integrated front end electronics

	Timing resolution	few 10 ps
	Position resolution	5-10 μm
	Maximum rate	10 ⁹ hits/s (ASIC)
	Dark count rate	10 ² counts/s
	Active area	~7 cm ²
	Channel density	0.23 M channels

European Research Council

European Research Council

The detector assembly

- Vacuum-based detector

 Assembly under high vacuum (10⁻¹⁰ mbar)
- Assembly and bonding to minimize distance between components
- High-speed connections through pins in ceramic carrier board
 - custom PGA 2.54 mm pitch
 - socket for detector I/O and low voltage
- Heat sink under ASIC
 - Assembly < 21° C with ASIC @ peak power
- PCB allows connection to FPGA-based DAQ system

The hybrid detector: entrance window + photocathode

Photon conversion using high Quantum Efficiency (QE) Photocathode

- E.g. bialkali photocathode
 - Up to 40-50% QE
 - O(10²) Hz/cm² dark count rate @300 K
 - Best for timing
- Flexible design allows to use different photocathodes

The hybrid detector: microchannel plate stack

Microchannel plate stack (chevron)

- > 10⁴ gain
- 5-10 µm pore size
- Atomic layer deposition for increased lifetime:
 - >20 C/cm² integrated anode charge
- Short distance from MCP to cathode and anode for best time and position resolution

The hybrid detector: pixelated anode

Pixelated anode

- Electron cloud spread over a number of pixels
- Anode is an ASIC
- it integrates digital and analog front-end
 - pixels coordinates
 - pixels Time of Arrival
 - pixels Time over Threshold
- Output:
 - 64 bits of data per event and per pixel with 64B/66B encoding
 - transmitted on 16 high speed links @ 10
 Gbps

The Timepix4 ASIC

- 65 nm CMOS (TSMC)
- ASIC productions:
 - □ Timepix4_v0 (Q1 2020)
 - □ Timepix4_v1 (Q4 2020)
 - □ Timepix4_v2 (Q3 2021)

The Timepix4 ASIC

- Timepix4 ASIC in 65nm CMOS
 - Developed by the Medipix Collaboration for hybrid pixel detectors

- 512 × 448 pixels (use bump pad as anode)
 - ο square pitch: 55 μm
- Integrates Time to Digital Converter (TDC)
 - \circ 195 ps bin size (56 ps rms resolution)
- High data rate capability
 - 160 Gbps
 - \circ 5.10⁹ hits/mm²/s
- Large Active Area: 7 cm²

The Timepix4 ASIC: improving resolution

- For each pixel, it provides combined measure of:
 - Time-of-Arrival [t_1]
 - $\circ \quad \text{Time-over-Threshold} \ [\ \textbf{t}_2 \ \textbf{-t}_1 \]$
- Time over Threshold used to:
 - \circ Correct for time-walk effect [t_{1} , t_{1} ,]
 - Improve resolution on cluster centroid
 - 3D clustering (space and time)
 - Improve timing resolution by multiple sampling
 - Cluster Time of Arrival Resolution few
 10s ps

Design status

- 2nd version of the Timepix4 ASIC available
 - currently study of ASIC performance
 - designing control software
 - designing control firmware
- Ceramic carrier studies ongoing
 - engineering mock-ups
 - effect of ceramics on MGT lines
 - mechanics/tolerances
 - components connection

Timepix4 tests

Preliminary measurements on Timepix4 to establish:

- cooling requirements
 - expected peak-power
 - power profile
- equalization procedure
 - select optimal Threshold per pixel
 - 5 DAC per pixel
 - 14-bit DAC code
 - 4-bit gain setting
- calibration procedure
- parameter optimization
 - compensation current
 - noisy pixel detection (sensor related)

Ceramic-carrier tests

Foreseen dedicated testbed

- electrical
- mechanical

Electrical design critical due to 10 Gbps lines

First qualitative electrical measures

- existing devices (loop-back)
- simulations

PGA not limiting factor per se

- industry standard for photo-tubes
- existing sockets
 - -1dB @ < 30 GHz
- requires careful placing of pins
- low pin density

Main contributor to signal degradation

- parasitic capacitance
 - Aluminium oxide multilayer PCB
 - Pads (wire-bond and pin pads)

Software and DAQ

Timepix4 control software and DAQ mandatory:

• full test of produced device

Existing version of software and DAQ by NIKHEF:

- great tool for preliminary test
- not fully open SW/FW/HW

Great effort to produce our own

- software
- firmware
- hardware

Summary

We are developing a detector for visible single photons:

- based on a vacuum tube
- a bare Timepix4 CMOS ASIC (anode)
- a Micro Channel Plate stack

This detector will allow the detection of up to 10⁹ photons/s with simultaneous measurement of time and position with excellent resolutions

- Fully exploit both timing and position resolutions of a MCP
- High-performance data acquisition (up to ~160 Gbps)

Detector will be produced together with a dedicated

- DAQ & socket
- control software
- cooling system

Development is ongoing...

Thank you!

4D PHOTON Team

- J. A. Alozy
- N. V. Biesuz
- R. Bolzonella
- M. Campbell •
- V. Cavallini
- A. Cotta Ramusino
- M. Fiorini
- M. Guarise
- X. Llopart Cudie •

CERN **INFN** Ferrara University of Ferrara, INFN Ferrara CERN University of Ferrara, INFN Ferrara **INFN** Ferrara University of Ferrara, INFN Ferrara University of Ferrara, INFN Ferrara CERN

European Research Council

BACK UP!

Timepix4

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448
Sensitive area			1.98 cm ²	6.94 cm ²
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA	
		Event Packet	48-bit	64-bit
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s
TOT energy resolution			< 2KeV	< 1Kev
TOA binning resolution			1.56ns	195ps
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)
Readout bandwidth			≤ 5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
Target global minimum threshold			<500 e⁻	<500 e⁻