Development of a hybrid single-photon detector with pixelated anode and integrated CMOS analog and digital front-end

Nicolò Vladi Biesuz
for the 4DPHOTON team

15th Pisa Meeting on Advanced Detectors
Overview

- The hybrid detector concept
- The Timepix4 ASIC
- Expected performance
- Design status

We are developing a single-photon detector:

- based on a vacuum tube
- transmission photocathode with high QE in the spectral region of interest
- dual micro-channel plate stack
- a pixelated CMOS read-out anode with integrated front end electronics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing resolution</td>
<td>few 10 ps</td>
</tr>
<tr>
<td>Position resolution</td>
<td>5-10 μm</td>
</tr>
<tr>
<td>Maximum rate</td>
<td>10^9 hits/s (ASIC)</td>
</tr>
<tr>
<td>Dark count rate</td>
<td>10^2 counts/s</td>
</tr>
<tr>
<td>Active area</td>
<td>~7 cm²</td>
</tr>
<tr>
<td>Channel density</td>
<td>0.23 M channels</td>
</tr>
</tbody>
</table>
The detector assembly

- Vacuum-based detector
 - Assembly under high vacuum (10^{-10} mbar)

- Assembly and bonding to minimize distance between components

- High-speed connections through pins in ceramic carrier board
 - Custom PGA - 2.54 mm pitch
 - Socket for detector I/O and low voltage

- Heat sink under ASIC
 - Assembly < 21°C with ASIC @ peak power

- PCB allows connection to FPGA-based DAQ system
The hybrid detector: entrance window + photocathode

Photon conversion using high Quantum Efficiency (QE) Photocathode

- E.g. bialkali photocathode
 - Up to 40-50% QE
 - $O(10^2) \text{ Hz/cm}^2$ dark count rate @300 K
 - Best for timing

- Flexible design allows to use different photocathodes
The hybrid detector: microchannel plate stack

Microchannel plate stack (chevron)

- $> 10^4$ gain
- 5-10 μm pore size
- Atomic layer deposition for increased lifetime:
 - >20 C/cm2 integrated anode charge
- Short distance from MCP to cathode and anode for best time and position resolution

N.V. Biesuz - Development of a hybrid single-photon detector with pixelated anode and integrated CMOS analog and digital front-end - 15th Pisa Meeting on Advanced Detectors
The hybrid detector: pixelated anode

Pixelated anode

- Electron cloud spread over a number of pixels
- Anode is an ASIC
- It integrates digital and analog front-end
 - pixels coordinates
 - pixels Time of Arrival
 - pixels Time over Threshold
- Output:
 - 64 bits of data per event and per pixel with 64B/66B encoding
 - transmitted on 16 high speed links @ 10 Gbps

Pixelated anode

Electrons cloud

Photo-electron

Single-photon

Electrons cloud

Pixelated anode

N.V. Biesuz - Development of a hybrid single-photon detector with pixelated anode and integrated CMOS analog and digital front-end
- 15th Pisa Meeting on Advanced Detectors
The Timepix4 ASIC

- 65 nm CMOS (TSMC)
- ASIC productions:
 - Timepix4_v0 (Q1 2020)
 - Timepix4_v1 (Q4 2020)
 - Timepix4_v2 (Q3 2021)
The Timepix4 ASIC

- Timepix4 ASIC in 65nm CMOS
 - Developed by the Medipix Collaboration for hybrid pixel detectors

 - 512 × 448 pixels (use bump pad as anode)
 - square pitch: 55 μm

- Integrates Time to Digital Converter (TDC)
 - 195 ps bin size (56 ps rms resolution)

- High data rate capability
 - 160 Gbps
 - 5×10^9 hits/mm²/s

- Large Active Area: 7 cm²
For each pixel, it provides combined measure of:

- Time-of-Arrival \[t_1 \]
- Time-over-Threshold \[t_2 - t_1 \]

Time over Threshold used to:

- Correct for time-walk effect \[t_1 - t_1' \]
- Improve resolution on cluster centroid
 - \(~16\mu m \rightarrow ~5\mu m\)
- 3D clustering (space and time)
 - Improve timing resolution by multiple sampling
 - Cluster Time of Arrival Resolution few 10s ps

\[\text{Signal amplitude} \]

\[\text{discriminator threshold} \]

\[\text{time} \]

\[t_1, t_1', t_2, t_2' \]
Design status

- 2nd version of the Timepix4 ASIC available
 - currently study of ASIC performance
 - designing control software
 - designing control firmware
- Ceramic carrier studies ongoing
 - engineering mock–ups
 - effect of ceramics on MGT lines
 - mechanics/tolerances
 - components connection
Timepix4 tests

Preliminary measurements on Timepix4 to establish:

- cooling requirements
 - expected peak-power
 - power profile

- equalization procedure
 - select optimal Threshold per pixel
 - 5 DAC per pixel
 - 14-bit DAC code
 - 4-bit gain setting

- calibration procedure

- parameter optimization
 - compensation current
 - noisy pixel detection (sensor related)
Ceramic-carrier tests

Foreseen dedicated testbed
- electrical
- mechanical

Electrical design critical due to 10 Gbps lines

First qualitative electrical measures
- existing devices (loop-back)
- simulations

PGA not limiting factor per se
- industry standard for photo-tubes
- existing sockets
 - -1dB @ < 30 GHz
- requires careful placing of pins
- low pin density

Main contributor to signal degradation
- parasitic capacitance
 - Aluminium oxide multilayer PCB
 - Pads (wire-bond and pin pads)
Software and DAQ

Timepix4 control software and DAQ mandatory:
- full test of produced device

Existing version of software and DAQ by NIKHEF:
- great tool for preliminary test
- not fully open SW/FW/HW

Great effort to produce our own
- software
- firmware
- hardware
We are developing a detector for visible single photons:

- based on a vacuum tube
- a bare Timepix4 CMOS ASIC (anode)
- a Micro Channel Plate stack

This detector will allow the detection of up to 10^9 photons/s with simultaneous measurement of time and position with excellent resolutions

- Fully exploit both timing and position resolutions of a MCP
- High-performance data acquisition (up to ~160 Gbps)

Detector will be produced together with a dedicated

- DAQ & socket
- control software
- cooling system

Development is ongoing…
Thank you!
4D PHOTON Team

- J. A. Alozy
 CERN
- N. V. Biesuz
 INFN Ferrara
- R. Bolzonella
 University of Ferrara, INFN Ferrara
- M. Campbell
 CERN
- V. Cavallini
 University of Ferrara, INFN Ferrara
- A. Cotta Ramusino
 INFN Ferrara
- M. Fiorini
 University of Ferrara, INFN Ferrara
- M. Guarise
 University of Ferrara, INFN Ferrara
- X. Llopart Cudie
 CERN
BACK UP!
Timepix4

<table>
<thead>
<tr>
<th>Readout Modes</th>
<th>Technology</th>
<th>Pixel Size</th>
<th>Pixel arrangement</th>
<th>Sensitive area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data driven (Tracking)</td>
<td>130nm – 8 metal</td>
<td>55 x 55 μm</td>
<td>3-side buttable 256 x 256</td>
<td>1.98 cm²</td>
</tr>
<tr>
<td>Frame based (Imaging)</td>
<td>65nm – 10 metal</td>
<td>55 x 55 μm</td>
<td>4-side buttable 512 x 448</td>
<td>6.94 cm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Packet Mode</td>
<td>48-bit</td>
<td>64-bit</td>
</tr>
<tr>
<td>Max rate</td>
<td>0.43x10⁶ hits/mm²/s</td>
<td>3.58x10⁶ hits/mm²/s</td>
</tr>
<tr>
<td>Max Pix rate</td>
<td>1.3 KHz/pixel</td>
<td>10.8 KHz/pixel</td>
</tr>
<tr>
<td>PC (10-bit) and iTOT (14-bit)</td>
<td>CRW: PC (8 or 16-bit)</td>
<td></td>
</tr>
<tr>
<td>Zero-suppressed (with pixel addr)</td>
<td>Full Frame (without pixel addr)</td>
<td></td>
</tr>
<tr>
<td>~0.82 x 10⁹ hits/mm²/s</td>
<td>~5 x 10⁹ hits/mm²/s</td>
<td></td>
</tr>
<tr>
<td>TOT energy resolution</td>
<td>< 2KeV</td>
<td>< 1Kev</td>
</tr>
<tr>
<td>TOA binning resolution</td>
<td>1.56ns</td>
<td>195ps</td>
</tr>
<tr>
<td>TOA dynamic range</td>
<td>409.6 μs (14-bits @ 40MHz)</td>
<td>1.6384 ms (16-bits @ 40MHz)</td>
</tr>
<tr>
<td>Readout bandwidth</td>
<td>≤5.12Gb (8x SLVS@640 Mbps)</td>
<td>≤163.84 Gbps (16x @10.24 Gbps)</td>
</tr>
<tr>
<td>Target global minimum threshold</td>
<td><500 e⁻</td>
<td><500 e⁻</td>
</tr>
</tbody>
</table>