

From J-PET prototype to total-body PET scanner

Łukasz Kapłon^{1, 2}

on behalf of the J-PET Collaboration

¹ Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Poland
² Total-Body Jagiellonian-PET Laboratory, Jagiellonian University in Kraków, Poland

24.05.2022

http://koza.if.uj.edu.pl/pet

lukasz.kaplon@uj.edu.pl

1

Outline

- 1) Motivation
- 2) J-PET: principle of operation
- 3) First J-PET prototypes
- 4) Total-body J-PET scanner
- 5) In-vitro positronium imaging
- 6) Conclusions

Motivation

The primary aim of the group is to elaborate a technology for:

- the cost-effective total-body PET scanner based on plastic scintillators;
- PET scanner with positronium and multiphoton imaging capabilities;
- modular and transportable PET scanner with the field of view adjustable to the patient size.

S. Sharma et al., Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts, IEEE Trans on Rad and Med. Sci (2020) 4:528

4

Time Over Threshold

More information will be presented in poster session on Friday at 15:30: Evaluation of data acquisition system based on FPGA and continuous readout of the J-PET detector.

S. Sharma et al., Estimating relationship between the Time Over Threshold and energy loss by photons in plastic scintillators used in the J-PET scanner, EJNMMI Physics (2020) 7:39

Differences between traditional PET and novel strip J-PET scanners

Parameters	Traditional PET	Strip J-PET	
Type of scintillator	crystals LSO, LYSO, BGO	plastics BC-404, BC-420, EJ-230	
Physical phenomenon	photoelectric effect	Compton scattering	
Measured property	energy of gamma photon + time of flight	time of flight	
Granularity of detector	high	low	
Number of scintillators	13,824 to 32,444 crystals	192 strips	
Scintillator size [mm ³]	e.g. 4x4x20; 6.3x6.3x30	e.g. 6x24x500; 5x19x300	
Photo-detector	PMT, SiPM, dSiPM, APD	PMT, SiPM	
Number of PMTs	256 to 768	384	
Detection efficiency	high	low	
Detector's acceptance	low	high	
Axial length [mm]	157 to 260	500	
Used electronics	analog	digital	
Signal triggering	triggering	triggerless data acquisition	
TOF resolution* [ps]	345 to 550	320	
Simultaneous imaging of the whole human body	no	yes	
Simultaneous imaging of PET-MRI	yes	yes	
Simultaneous imaging of	no	yes	

Scintillator	Light output (photons/Mev)	Decay time (ns)	Density (g/cm ³)	Light attenuation length (cm)
LYSO	32000	41	7.1	20.9
BGO	8500	300	7.13	22.8
GSO	7600	30-60	6.71	22.2
LaBr ₃	65000	15	5.29	16.0
BC-408 (plastic)	11000	2.1	1.023	380

S. Vandenberghe, P. Moskal, J. Karp, State of the art in total body PET, EJNMMI Physics (2020) 7:35

Technical attenuation length of plastic scintillators

Ł. Kapłon, Technical attenuation length measurement of plastic scintillator strips for the total-body J-PET scanner, IEEE Trans. Nucl. Sci. 2020; 67:2286-2289

Light detectors for J-PET

Mini J-PET

Modular J-PET

Parameter	PMT R4998	SiPM S13361	
Effective photosensitive area (mm)	20 diameter	6 x 6	
Spectral response range (nm)	300 - 650	320 - 900	
Peak sensitivity wavelength (nm)	420	450	
Gain	5.0 * 10^6	1.7 * 10^6	
Photon detection efficiency (%)	25	40	
Supply voltage (V)	2500	60	

J-PET scanner prototypes: timeline

J-PET scanner prototypes: photos

Two detector modules

3 layers J-PET

Mini J-PET

Modular J-PET

J-PET scanner prototypes: properties

Prototype	Plastic scintillator	Light detector	Spatial resolution (FWHM, mm)	CRT (sigma, ps)
Two detector modules	2 pieces BC-420 5x19x300	4 pieces PMT R5320	6.7 MLEM	280
Mini J-PET	24 pieces BC-420 5x19x300	48 pieces PMT R4998	27 MLEM	490
3 layers J-PET	192 pieces EJ-230 7x19x500	384 pieces PMT R9800	11.4 3D MLEM	220
Modular J-PET	312 pieces BC-404 6x24x500	2496 pieces SiPM S13361-5797	5.4 QETIR	230
 Total-Body J-PET	5400 pieces EJ-200 / BC-408 6x30x330	43 000 pieces SiPM S14	4.9 MLEM	240

Spatial resolution

The world's first modular and portable positron emission tomography scanner

Total-Body Jagiellonian-PET Laboratory, Krakow

The world's first modular and portable positron emission tomography scanner

First imaging of patients with modular J-PET in Medical University of Warsaw

The world's first modular and portable positron emission tomography scanner

Imaging of PMMA fantoms irradiated with proton beam in Institute of Nuclear Physics Polish Academy of Sciences

J-PET Total-body J-PET: plastic scintillators + wavelength shifters

J. Smyrski et al., Measurement of gamma quantum interaction point in plastic scintillator with WLS strips, Nucl Instr and Meth in Phys Res A 851 (2017) 39-42

Total-body J-PET: sensitivity gain

J-PET Total-body J-PET: in-vitro positronium imaging

P. Moskal et al., Positronium imaging with the novel multiphoton PET scanner, Science Advances 7 (2021) eabh4394

J-PET Total-body J-PET: in-vitro positronium imaging

Parameter name	Cardiac myxoma 1	Cardiac myxoma 2	Adipose tissue 1	Adipose tissue 2	
Parapositronium mean lifetime (ns)	0.125 (fixed)				
Parapositronium intensity (%)	13.26 (18)	12.21 (21)	17.18 (16)	17.14 (20)	
Direct annihilation mean lifetime (ns)	0.388 (fixed)				
Direct annihilation intensity (%)	65.35 (22)	64.52 (27)	61.34 (20)	61.31 (23)	
o-Ps mean lifetime (ns)	1.950 (19)	1.874 (20)	2.645 (27)	2.581 (30)	
o-Ps intensity (%)	21.39 (47)	23.27 (45)	21.49 (41)	21.56 (54)	
Adjusted R ²	0.999	0.999	0.999	0.999	
Reduced χ^2	0.999	1.067	1.039	1.253	

P. Moskal et al., Positronium imaging with the novel multiphoton PET scanner, Science Advances 7 (2021) eabh4394

We are developing the Jagiellonian Positron Emission Tomography scanner based on plastic scintillators:

- is modular and transportable,
- have field of view 500 mm (modular version) and will have 2000 mm (total-body PET),
- is cost-effective in comparison with other total-body PET scanners,
- can image positronium and multi-photon isotopes labeled with biomolecules.

Acknowledgments:

- Polish National Center for Research and Development through grant INNOTECH-K1/IN1/64/159174/NCBR/12,
- Foundation for Polish Science through the MPD and TEAM/2017-4/39 programs,
- National Science Centre of Poland through grant nos. 2017/25/N/NZ1/00861 and 2019/35/B/ST2/03562,
- Ministry for Science and Higher Education through grants nos. 6673/IA/SP/2016 and 7150/E-338/SPUB/2017/1,
- Jagiellonian University via project CRP/0641.221.2020,
- SciMat Priority Research Area budget under the program Excellence Initiative Research University at Jagiellonian University.