

15th Pisa meeting on advanced detectors 22-28 May 2022

The Belle II Upgrade Program

Jerome Baudot for the Belle II collaboration

Institut Pluridisciplinaire Hubert Curien STRASBCERG

Belle II/SuperKEKB current status
 & rationale for upgradeS
 Overview of proposed technologies
 and R&Ds

B,c,τ-factory: SuperKEKB + Belle II

- Initial physics program based on $L_{int} = 50 \text{ ab}^{-1} \text{ at } \sqrt{s} = M_{Y(4S)}$ \Rightarrow The Belle II physics book <u>PTEP 12 (2019) 123C01</u>
- High luminosity collider:
 - L_{peak} ~ multi 10³⁵ cm⁻².s⁻¹ range
- High current / nano-beams / specific crossing features
- Challenging background conditions

 \Rightarrow Snowmass contribution: <u>arXiv 2203.05731</u>

Belle II detector:

Belle II detector Upgraded or new / Belle

Luminosity & data taking timeline

TODAY

- 386 fb⁻¹ accumulated
- World record peak lumi 4.1 x 10³⁴ cm⁻².s⁻¹

- Long Shutdown Jul-2022 / Fall 2023
 - Completeness & robustness of present Belle II

- Long Shutdown ~2026/27
 - Higher luminosity SuperKEKB
 Change collider interaction region

reach 6 x 10³⁵ cm⁻².s⁻¹

- Beyond 2032, ideas for
 - Extended physics program

Polarized beams reach 10³⁶ cm⁻².s⁻¹

Upgrade motivation

- Long Shutdown Jul-2022 / Fall 2023
 - Completeness & robustness of present Belle II

- Long Shutdown ~2026/27
 - Higher luminosity SuperKEKB
 Change collider interaction region

reach 6 x 10³⁵ cm⁻².s⁻¹

- Beyond 2032, ideas for
 - Extended physics program

Polarized beams reach 10³⁶ cm⁻².s⁻¹

- Mitigate impact of beam-induced background
- Increase detector lifetime against radiation
- Improve performance: more physics/ab-1

Upgrade plans

Short-term:

- Vertex: complete 2nd layer for pixel
- PID: replace PMTs used in TOP
- Data acquisition: replace boards (PCIe40)
 On-going or planned
 On-going or planned
 On-going or planned

Medium-term:

Long-term:

Tracker

- Vertex detector
- Parts of main tracker
- PID with TOP & KLM

• PID with TOP, ARICH, KLM

 \Rightarrow Snowmass contribution: arXiv 2203.11349

- Long Shutdown Jul-2022 / Fall 2023
 - Completeness & robustness of present Belle II

- Long Shutdown ~2026/27
 - Higher luminosity SuperKEKB
 Change collider interaction region

reach 6 x 10³⁵ cm⁻².s⁻¹

- Beyond 2032, ideas for
 - Extended physics program

Polarized beams reach 10³⁶ cm⁻².s⁻¹

Calorimetry

Vertex detector: VXD (PXD+SVD)

prototy

Pixel layout

Rationale

- Be prepared for IR redesign (higher Background conditions)
- Improve performance / IP resolution, low $\ensuremath{p_{T}}$ tracks
- Be prepared to cover inner CDC (radii 135-240 mm)
- Triggering: possible contribution to L1

• Target Medium-term

Requirements

5-6 layers over radii	14-135 mm
Spatial resolution	< 15 µm
Total material budget	< (2x0.2% + 4x0.7%) X ₀
Hit rate	120 ↘ 1 MHz/cm ²
Total Ionizing Dose (inner)	100 kGy / year
NIEL fluence (inner)	5x10 ¹³ n _{eq} /cm ²

 \Rightarrow Higher granularity in time and/or space / current VXD

<u>Various proposals</u>

- Thin and fine-pitch DSSD
 - Sensor 140 μ m thin & z-pitch < 80 μ m
 - New ASIC for low noise

Upgraded DEPFET

 Higher radiation tolerance through higher gain

DuTiP 1st prototype

6 mm

- Faster read-out (few µs) with re-orientation and new ASICs

• SOI pixels

on-going

tests

 \propto

Prototyping

- Lapis 200 nm process
- Dual Time pixel sensor (DuTiP)
- pitch 45 µm
 2x60 ns integration

• CMOS-MAPS

- Tower 180 nm process
- Extension of TJ-MONOPIX2 \rightarrow OBELIX sensor
- Pitch <40 µm with 100 ns integration
- Fully pixelated VXD concept = VTX with all-Si modules or ALICE-ITS-like ladders

Vertex detector: VXD (PXD+SVD)

Pixel layout

45 um

Rationale

- Be prepared for IR redesign (higher Background conditions) @ medium-term
- Be prepared to cover inner CDC (radii 135-240 mm)
- Improve performance / IP resolution, low p_T tracks
- Triggering: possible contribution to L1
- Target Medium-term

Requirements

<u>Requirements</u>		ests .
5-6 layers over radii	14-135 mm	× *
Spatial resolution	< 15 µm	ino.
Total material budget	< (2x0.2% + 4x0.7%) X ₀	typ
Hit rate	120 № 1 MHz/cm ²	010
Total Ionizing Dose (inner)	(inner) 100 C.Wessel, MAPS upr Tuesday AM talk	
NIEL fluence (inner)	1assaccesi, VTX perf. simul	ation
The second se	esday AM poster	

Various proposals

- Thin and fine-pitch DSSD
- Sensor 140 µm thin & pitch
- New ASIC for low noise

Upgraded DEPFET

- Higher radiation tolerance through higher gain

DuTiP 1st prototype

- Faster read-out (few µs) with re-orientation and new ASICs

SOI pixels

on-going

- Lapis 200 nm process
- Dual Time pixel sensor (DuTiP)
- pitch 45 µm 2x60 ns integration

CMOS-MAPS

- Tower 180 nm process
- Extension of TJ-MONOPIX2 \rightarrow OBELIX sensor
- Pitch <40 µm with 100 ns integration
- Fully pixelated VXD concept = VTX with all-Si modules or ALICE-ITS-like ladders

Main tracker: CDC

Short-/Medium-term

- Robustness against radiation-damage
- Mitigate cross-talk between read-out channels

Replacement of read-out board

- New ASIC
 - all-in-one ASD+ADC, lower cross-talk (100 ≥ 10 mV/7pC)
- Components with higher radiation tolerance
 - Optical transceiver (sensitive to γ and neutrons)
 - FPGA (sensitive to SEU)

- Tests in 2022
- Mass production 2023

Current read-out board

Long-term studies

• Sustaining higher rates & backgrounds

- Extended VTX
- TPC tracker with pixel read-out Gridpix-like 200² μm²

Particle Identification: TOP & ARICH

Time Of Propagation (TOP)

- Maintain efficiency against ever higher background
 - Needed already at short/medium-term
- Photon detection devices
 - 2022: move to Atomic Layer Deposited ALD-MCP-PMT
 - 2026: move to life extended ALD-MCP-PMT possibly to SiPM

- Read-out electronics to accommodate SiPM
 - Better compactness using SiPM dedicated ASICs
 - Allows extra cooling required by SiPM

- Aerogel RICH
 - target long term
 - Current Hybrid-APD not adapted beyond 8x10³⁵ cm⁻².s⁻¹
 - 1st option: SiPM
 - On-going evaluation of various device
 - Single photon detection, Dark count rate, Neutron sensitivity (5x10¹² n_{eq}/cm²), Cooling required
 - 2nd option: Large Area Picosecond photodetectors
 - Read-out
 - Upgrade of current ASIC
 - Or new ASIC
- STOPGAP proposal
 - target long term
 - Fill-in gaps between TOP quartz bar
 - CMOS-MAPS with 50 ps timing

From PiN diodes to APD Amplitude [mV]

pindiodes

APD+CR110

400

300

500

600

Calorimetry: ECL

Read-out of current Csi(TI)

Rationale

100

50

Target long-term

200

100

Reduce pile-up from beam-induced background

Faster cristals

- Full replacement: $Csi(TI) \rightarrow pure Csi$ - From 1 µs to 30 ns light decay tile
- Photon detection: WIS + APD

New preshower

- BGO/LYSO + 1mm² Si pixel
 - Angle = 0.08 rad expected @ normal incidence

Klong & Muon identification: KLM

• Target **medium to long term**

- Complete replacement of RPCs with Scintillators
 - Rationale: increased rate & robustness of read-out chain
 - New system = scint. bars + wave-length shifter fibers + SiPM
 Already used in first layer & end-cap
 - More compact read-out
 - Allowing waveform sampling (time resol.)
 & improved data push to trigger

Investigating TOF-like performance

- Rationale: K_L energy & background neutron rejection
- Required time resolution ~30 ps
- R&D on-going with large MPPC + new pre-amp

Trigger

Rationale

- Keep high-efficiency on hadronic events
- Improve efficiency on low-multiplicity events (τ , dark sector)

Continuous improvements

Hardware

- Deployment of most recent UT4 boards
 - Xilinx Ultrascale with 200k gates, 25 Gbps, DDR4
 - Target 2026

• New UT5

- Xilinx Ultrascale+ with 8000k gates, 32 Gbps, UltraRAM
- Lower #boards needed
- 2024-32

<u>Firmware</u>

Component	Improvement	Time	$\#\mathrm{UT}$
CDC cluster finder	beamBG rejection	2026	10
CDC 2Dtrack finder	increase occupancy limit	2022	4
CDC 3Dtrack finder	enlarge θ angle acceptance	2022	4
CDC 3Dtrack fitter (1)	beamBG rejection	2025	4
CDC 3Dtrack fitter (2)	beamBG rejection	2025	4
Displaced vertex finder	LLP search	2025	1
ECL waveform fitter	resolution	2026	
ECL cluster finder	beamBG rejection	2026	1
KLM track finder	beamBG rejection	2024	_
VXD trigger	BG rejection	2032	_
GRL event identification	signal efficiency	2025	1
GDL injection veto	DAQ efficiency	2024	_

Summary & Outlook

- Belle II physics goals has steered and is steering a rich instrumental program
- Belle II operates efficiently at peak luminosities just below 10³⁵ cm⁻².s⁻¹
- Short-term: consolidation of existing technologies
 - entering the L_{inst} = 1-2 10³⁵ cm⁻².s⁻¹ regime in the next years
- Medium- to Long-term: introducing new technologies/concepts
 - running safely at 6x10³⁵ cm⁻².s⁻¹ after 2026 and beyond after 2032
 - with enhanced performances

• To come

- International Task Force on SuperKEKB luminosity → conclusion THIS summer
- Conceptual Design Report for medium-term upgrades \rightarrow early 2023

SUPPLEMENTARY SLIDES

Belle II @ Pisa meeting on advanced det.

- Belle I
- Christian Wessel, MAPS upgrade, Tuesday AM https://agenda.infn.it/event/22092/contributions/167366/
- Umberto Tamponi, PID system, Monday PM <u>https://agenda.infn.it/event/22092/contributions/167677/</u>
- Rok Pestonik, ARICH, Monday posters <u>https://agenda.infn.it/event/22092/contributions/167676/</u>
- Ludovico Massacesi, MAPS simulation, Tuesday poster, <u>https://agenda.infn.it/event/22092/contributions/166670/</u>
- Chrstian Irmler, SVD, Tuesday poster, https://agenda.infn.it/event/22092/contributions/166726/
- Alice Gabriella, Diamond calibration, Tuesday poster, https://agenda.infn.it/event/22092/contributions/166769/

SuperKEKB collider

 $\sigma_v \ll \sigma_7$

 e^+e^-

Overview of the Upgrade program

Subdector	Function	upgrade idea	time scale		
PXD	Vertex Detector	2 layer installation	short-term		
		new DEPFET	medium-term		
SVD	Vertex Detector	thin, double-sided strips, w/ new frontend	medium-term		
PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term		
		all-pixels: DMAPS CMOS sensors	medium-term		
CDC	Tracking	upgrade front end electronics	short/medium-term		
		replace inner part with silicon	medium/long term		
		replace with TPC w/ MPGD readout	long-term		
TOP	PID, barrel	Replace conventional MCP-PMTs	short-term		
		Replace not-life-extended ALD MCP-PMTs	medium-term		
		STOPGAP TOF and timing detector	long-term		
ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term		
		replace HAPD with Large Area Picosecond Photodetectors	long-term		
ECL	$\gamma, e \text{ ID}$	<i>i</i> , <i>e</i> ID add pre-shower detector in front of ECL			
		Replace ECL PiN diodes with APDs	long-term		
		Replace CsI(Tl) with pure CsI crystals	long-term		
KLM	K_L, μ ID	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term		
		on-detector upgraded scintillator readout	medium/long-term		
		timing upgrade for K-long momentum measurement	medium/long-term		
Trigger		firmware improvements	continuos		
DAQ		PCIe40 readout upgrade	ongoing		
		add 1300-1900 cores to HLT	short/medium-term		

Impact on performance & physics

Belle I

KLM

ECL

 $\operatorname{ger})$

=> Snowmass Belle II : arXiv 2203.11349

Topic	VXD CDC	PID ECL	KLM		0) (incl. Trigg		(Ω coverage)
Low momentum track finding	\checkmark				XI	CDC	PID	PID(f)
Track p, M resolution	\checkmark			Topic	\mathbf{b}	0	Р	d r
IP/Vertex resolution	\checkmark			$\mathcal{B}(B o au u, B o K^{(*)} u ar{ u})$	\checkmark			\checkmark
Hadron ID	\checkmark	\checkmark		$\mathcal{B}(B o X_u \ell \nu)$	\checkmark		\checkmark	\checkmark
$K_{ m L}^0$ ID		\checkmark	\checkmark	$R, \operatorname{Polarisation}(B \to D^{(*)} \tau \nu)$	\checkmark			
Lepton ID	\checkmark	\checkmark	\checkmark	FEI	\checkmark	\checkmark		\checkmark
π^{0}, γ		\checkmark		$S_{ m CP}, C_{ m CP}(B ightarrow \pi^0 \pi^0, K^0_S \pi^0)$	\checkmark	\checkmark		
Trigger	\checkmark \checkmark			$S_{ m CP}, C_{ m CP}(B o ho \gamma)$		\checkmark	\checkmark	
	Lora Guid			$S_{ m CP}, C_{ m CP}(B ightarrow J/\psi K_{ m S}^0, \eta' K_{ m S}^0)$	\checkmark	\checkmark		
				Flavour tagger	\checkmark		\checkmark	
				$ au ~ { m LFV}$		\checkmark		

Dark sector searches

Belle II, another view

