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Precision tracking and timing

 LHC and HL-LHC: high energies, luminosities in p-p collisions — pileup
and radiation damage
* Phase-2 upgrades for ATLAS and CMS: improvement of tracking

detectors (silicon pixels and strips) + installation of dedicated timing
detectors to reduce effect of pileup at extreme luminosities

LHC nominal: 10* cm® s HL-LHC: 10* cm® s

* 4D tracking is going to be essential in future high-energy physics
experiments to mitigate effects of higher luminosity and pile-up and
to improve tracking, vertexing and timing precision
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CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, CERN-LHCC-2019-003, 2019

ATLAS Collaboration, A High-Granularity Timing Detector for the ATLAS Phase-Il Upgrade, CERN-LHCC-2018-023, 2018
H. F.-W. Sadrozinski et al, 4D tracking with ultra-fast silicon detectors, Reports on Progress in Physics 2018, 81, 026101
D. Berry et al, Snowmass White Paper: 4-Dimensional Trackers, https://arxiv.org/abs/2203.13900, 2022



Low gain avalanche diodes

* Silicon low-gain avalanche diodes (LGADs) are studied by
the CMS and ATLAS experiments for their endcap timing
detector upgrades

* Thin sensors, typical thickness 50 um

* Low to moderate gain (5-50) provided by p* multiplication layer
» Timing resolution down to ca. 20 ps

» Good radiation hardness up to 10*> n../cm?

* A more recent development: AC-coupled LGAD

n* connection AC metal pads n* connection
p-stop Dielectric l

\ | l \
-F I PR - -
?
Junction termination

n*contact  extension

Metal pads

- - -

S0 um | ' p-type bulk

~50 pm | “p-type bulk dielectric

resistive n* layer

‘[ p*gain layer ] p*gain layer

p** contact p**contact
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H. F.-W. Sadrozinski et al, 4D tracking with ultra-fast silicon detectors, Reports on Progress in Physics 2018, 81, 026101
CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, CERN-LHCC-2019-003, 2019
ATLAS Collaboration, A High-Granularity Timing Detector for the ATLAS Phase-Il Upgrade, CERN-LHCC-2018-023, 2018 4
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AC-coupled low gain avalanche diodes

In AC-coupled LGADs, also referred to as Resistive Silicon Detectors (RSD), the
multiplication layer and n* contact are continuous, only the metal is patterned:
» The signal is read out from metal pads on top of a continuous layer of dielectric

» The underlying resistive n* implant is contacted only by a separate grounding
contact

» No junction termination extension: fill factor ~100

The continuous n* layer is resistive, i.e. extraction of charges is not direct
» Mirroring of charge at the n* layer on the metal pads: AC-coupling
» Strong sharing of charge between metal pads

> Extrapolation of position based on signal sharing — finer position resolution for
larger pitch, also allowing for more sparse readout channels
AC signals

charge charge
extraction —/\f‘ J\ﬁ J\f —Nm extraction
T

charge multiplication

charge collection

G. Giacomini et al., Fabrication and performance of AC-coupled LGADs, JINST 2019, 14, P09004
A. Apresyan et al., Measurements of an AC-LGAD strip sensor with a 120 GeV proton beam, JINST 2020, 15, P09038

S. M. Mazza, An LGAD-Based Full Active Target for the PIONEER Experiment, Instruments 2021, 5(4), 40



Key developments in (AC-)LGADs

* Gain layer doping
e Suitable gain, breakdown voltage, radiation hardness...
 Thinner sensors: from 50 to below 30 um

* Faster signal rise time and charge collection time

* Reducing Landau component of the timing resolution
» Towards 10 ps timing resolution

n* layer resistivity

* Dielectric

* Segmentation

* Type: pad/pixel, strip

* Geometry: rectangular, cross-shaped, ...

* Metal size
* Pitch

J. Ott et al, AC-LGADs for high-precision timing and tracking, PM2021
°



AC-LGAD strip sensors

120 GeV proton beam at the
Fermilab test beam facility

BNL 2021 Strip sensor
Metal width 80 um, three
different pitches:
Narrow, 100 um
Medium, 150 um
Wide, 200 um
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C. Madrid, 39t RD50 Workshop, November 2021
(https://indico.cern.ch/event/1074989/contributions/4602013/)

Brookhaven National Laboratory

IR Laser TCT

BNL 2021, new production

Variations in both pitch and metal width
* 100/200/300 pm pitch with 50 % metal
* Uniform strips: 500 um pitch - 200 pum
metal
Including long(er) strips of 1 cm and 2.5 cm

TN A, DRV O WA i AL TR K BAT W £ B ¥ Ay
R | B SN SIS AT AR T |
g

Strip length ca. 2.5 cm
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Position resolution by signal sharing

Case of two adjacent strips 120

* Averaged maximum pulse height (pbmax): The 100 |
pmax sum ist not constant under the strip

& — ==
S

—380
metal, but fairly constant between strip centers %
160 5
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o

140

= 120 : 20
> 1 5000R
£ 100 5 .
E ! 0 1 1 L T I | L L 1
3 %0 : _ 5.4 5.3 2 -5.1 -5 -4.9 -4.8
3 60 i - Position [mm]
£ i -
& 40 ; i
20 b j 0.9
0 A S WU A N ;
-5.4 -5.3 -5.2 -5.1
Position [mm]
S
 The pmax fraction of an individual strip is 5
defined as: I
. pmax (channel) E
pmax fraction (channel) =
Y. pmax
 The position resolution can be calculated from e
. } o } -5.2 -5.15 -5.1 -5.05 -5
the fraction of pmax at a given position (fitted Position [mm]

with an error function):
) Signal-to-noise ratio is favourable in
d(position) S

S : — aposition)” o> -\ o — AC-)LGADs due to their internal gain
position resolution oy,5 = ﬁd(fraction) N (AC-) g 3
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Position resolution in BNL 2021 strips

e Strip pitch is expected to - and appears to - have a large impact on charge
sharing as seen in the pmax fraction profile ...

e ... position resolution of ca. 15 um at the respective strip metal centers (end of
the data points in the plot): in fact very similar for all three pitches

* Between strips, a position resolution of ~6 um or less is reached; slightly
better for smaller pitch

* At best, < 1/20 of the pitch
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Timing resolution

2 _ 2 2 2 2 2
Ot = OlLandau + a]itter +UTimeWalk + OTDpc + ODpistortion

AC-LGADs provide comparable performance to
conventional LGADs, determined by largely by the gain
layer: < 40 ps established, 20 ps reachable

Impact of signal sharing on timing resolution:

* Weighted reconstruction of
several contributions can
improve timing resolution °'><>—\/°“<‘

e But: lower signal in individual B
segment increases rise time and 0
reduces signal-to-noise ratio
(and thus timing resolution
through the jitter component)

v
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Charge on neighboring strips

* Closer examination of the individual strips’ pmax profiles reveals
contribution from next and even second neighboring strip

e Actual sharing extends from the central strip almost to the far edge of
the next neighbor

» Localization indicates induced charge on the neighboring strips, not purely
conduction through the resistive n* layer
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Narrow, 100 um pitch 11
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Charge sharing at long distances

* Selection: proton track on strip #6
* “in-time” data within 1 ns time window of the main signal

e Constant, position-independent pmax (above noise) at
longer distance from hit — not predicted by simulations

* Sharing or pick-up from the n* layer?
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Laser study of charge sharing

e 500um-pitch/200pum-metal sensor differs from others in
terms of charge sharing, but still provides < 20um position
resolution between metal strips

* Strip length also increases charge sharing

-200 -150 -100 -50 0 50 100 150 200 250
Centered position (xm)

J. Ott et al, AC-LGADs for high-precision timing and tracking, PM2021
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Laser study of charge sharing
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Electrode shape and capacitance

 Emphasis on electrode shape and geometry in FBK RSD2*
e \Various shapes: strips, regular rectangles, circles, crosses, stars...
* Geometry: electrodes arranged on a square grid or on triangles

* Metallization: e.g. cutting out the metal on strips, leaving a
“frame” instead of a fully metallized strip

» Direct impact on electrode capacitance

[E
»

=0= 50 pm, frame
—@— 50 um, full metal
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*M. Mandurrino et al, 39" RD50 Workshop, November 2021 (https://indico.cern.ch/event/1074989/contributions/4602006/) 16
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* Charge sharing in terms of pmax fraction, and subsequently position
resolution can be determined in the same way for pad sensors

B2 and C2 refer here to different n* implant doses*

» Effect of n* resistivity on is significant

» n*resistivity is another parameter to tune charge sharing (to the
requirements of specific applications)
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* K. Nakamura et al, First Prototype of Finely Segmented HPK AC-LGAD Detectors, JPS Conf. Proc. 34, 010016 (2021)
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Example of future experiments: PIONEER

 New pion decay experiment approved at PSI,
data taking to be started in 2028 - first beam
time assigned for May 2022

* Design baseline for the Active TARget: 2x2 cm?
area with 48 planes of 120 um thick AC-LGAD
strips, pitch ca. 200 um

* Large energy deposition by stopping particles: need
sufficient charge sharing to provide good spatial
resolution, but not enough to occupy large areas of

n Decay at Rest

n Decay at Rest &
u Decay at Rest

m Decay in Flight &
| Decay at Rest

m Decay at Rest &
p Decay in Flight

Tt —pt—et

PIONEER: Studies of Rare Pion Decays, https://arxiv.org/abs/2203.01981 (2022)

Mo - (553) Mev

Poster

S. M. Mazza, An LGAD-Based Full Active Target for the PIONEER Experiment, Instruments 2021, 5(4), 40 18



Electron-lon Collider Detector 1

* Recently issued recommendation for Detector 1: largely based on the
ECCE design, also influence from ATHENA

* Both designs include a time-of-flight particle ID detector layer with
AC-LGADs as baseline technology

3.5m n=0 5.0m
|

3.2m 3.2m QCC{:
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https://www.ecce-eic.org Hadrons Electrons

T. Horn et al, https://indico.bnl.gov/event/14994/contributions/60656/attachments/40379/67415/ECCE-Bi-Weekly-Meeting-03282022.pdf
https://indico.bnl.gov/event/15371/contributions/62712/attachments/40742/68079/Detector%201%20Introduction%20and%200verview
%20Rev%205.pdf 19



Electron-lon Collider Detector 1

* Recently issued recommendation for Detector 1: largely
based on the ECCE design, also influence from ATHENA

* Both designs include a time-of-flight particle ID detector
layer, with AC-LGADs as baseline technology

* R&D efforts ongoing and ramping up!

Radiation hardness of timing detectors less challenging -
more important:

* Combination of precise temporal and spatial resolution: 25 ps
and 30 um / hit

* Low material budget

* Decisions on sensor geometry and fabrication, and readout
electronics to be made soon

J. Ott et al, AC-LGADs for high-precision timing and tracking, PM2021
°

https://www.ecce-eic.org

T. Horn et al, https://indico.bnl.gov/event/14994/contributions/60656/attachments/40379/67415/ECCE-Bi-Weekly-Meeting-03282022.pdf
https://indico.bnl.gov/event/15371/contributions/62712/attachments/40742/68079/Detector%201%20Introduction%20and%200verview
%20Rev%205.pdf 20
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Summary

Thanks to signal sharing, AC-LGADs can achieve remarkable position
resolution even with large and widely spaced electrodes

* Lessthan 1/20 of the pitch
Charge sharing in AC-LGADs is a complex phenomenon, and is influenced
by the pattern of the metal electrode (width, pitch, geometry), as well as
n* layer resistivity

* Induction of signal on neighboring electrodes is observed

* Examination of the noise distributions in terms of pulse height and time
improves the separation of real signals from noise

Extensive ongoing research on AC-LGADs towards precision timing and
4-dimensional tracking in future colliders and experiments

» Efforts will provide valuable information for adjusting the properties of future
AC-LGAD sensors to their targeted applications

* Including development of readout electronics!
Precise timing and position resolution and fast charge collection time is

also attractive to other fields, such as synchrotron beam monitoring,
photon counting, etc

21
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J. Ott et al, AC-LGADs for high-precision timing and tracking, PM2021
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Signal pulse shapes

* Signal in second neighbors is
observed, but with lower
amplitude, wider spread in pmax
and peak time tmax

Amplitude [mV]
|
[=)]
=)
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Test beam: time stamp relative to trigger

Especially with fast sensors like (AC-)LGADs, precise timing of the
signal is interesting for the understanding charge sharing and the role
of noise
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Separation of real signals: In-time vs out-of-time

Noise and signal pmax distributions can be distinct — or very close

together, almost indistinguishable

> Visible by in-time/out-of-time separation
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Separation of real signals: In-time vs out-of-time

* Smaller time window reduces noise contribution to signal

* The choice of model used to describe the signal (mean, Landau,
Gaussian) does not have a strong impact on signal/noise separation

* Even at large distances from the triggered channel, in-time signal
pulse heights are above the noise floor
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