TES Based Light Detectors for CUPID using an IrPt bi-layer transition edge sensor

15th Pisa Meeting on Advanced Detectors Bradford Welliver 2022-05-26

Berkeley university of california

Motivation: Double Beta Decay

- 2vββ is a rare standard model process
- Broad energy distribution
- Observed half-lives $\tau > 10^{19}$ years
- Ονββ is a hypothetical, unobserved process
- Immediate implication of $\Delta L \neq 0$
 - Lepton number violation = new physics!
 - Can imply Majorana mass of v
 - Possible connection to baryon asymmetry

Counts

Motivation: CUORE

- Brand new analysis results on 1038.4 kg-yr of exposure
- Pulse shape discrimination via single component PCA
- Bayesian analysis via BAT with various nuisance parameters (<0.8% impact on limit due to systematics)
- Publication: Nature 604, 53–58 (2022)

Cryogenic Underground Observatory for Rare Events

CUORE Result

$T_{1/2}^{0\nu} > 2.2 \times 10^{25} \text{ yr} (90\% \text{ C}.\text{I.})$ $m_{\beta\beta} < (90 - 305) \,\mathrm{meV} \,(90 \,\% \,\mathrm{C} \,. \,\mathrm{I.})$

- Array of 988 5x5x5 cm^{3 nat}TeO₂ crystals (742 kg, 206 kg active isotope)
- Q_{ββ} ~ 2527.52 keV
- Source = detector ($0\nu\beta\beta$ containment ε ~ 88%)
- Cryogenic calorimeters read-out with NTDthermistors

Bradford Welliver (UC Berkeley)

Motivation: Beyond CUORE

• CUORE uses ¹³⁰Te (Q-value 2527.515 keV)

Phys. Rev. Lett. 120, 132501 Phys. Rev. Lett. 124, 122501 Nature 604, 53–58 (2022) (1 Ton-yr)

Bradford Welliver (UC Berkeley)

Background Limited Background Free

 $S \propto \frac{N_A a \eta \epsilon}{M_{mol}} MT$ **CUPID** (baseline) goal

Scintillating Calorimeters

- Low heat capacity => very temperature sensitive
- Neutron transmutation doped (NTD) Ge sensor
- Method has good energy resolution
- NTD meet technical needs for CUPID bolometers
- Additional energy from scintillating light

Light Detector

• $2v\beta\beta$ pileup poses a problem – TES well suited to address especially for CUPID-1T

Example: CUPID-Mo LMO and LD

2.5

Transition Edge Sensor

$$C \approx C_{bolo} (T^3) + C_{TES} (T) + C_{impur}.$$
TES heat capacity is small and thin Si wafer C ~ 20 pJ/K
TES response to temperature and current changes can be parameterized

$$\alpha = \frac{T_0}{R_0} \frac{\partial R}{\partial T} \Big|_I \qquad \beta = \frac{I_0}{R_0} \frac{\partial R}{\partial I} \Big|_T \qquad \mathcal{L}_0 = \frac{I_0^2 R_0 \alpha}{GT_0} \qquad \cdot \text{ Energy}$$
TES operated at Io, Ro, To, and with thermal conductivity G from TES to bath

$$\tau = \frac{C}{G} \xrightarrow{\text{ETF}} \tau_{eff} = \frac{C}{G (1 + \mathcal{L}_0)}$$
Telectrothermal feedback enhances thermal decay constant

$$\Delta E_{FWHM} \sim \sqrt{\frac{4k_B T_0^2 C}{\alpha} \sqrt{\frac{n}{2}}}$$
Very high intrinsic resolution ~ 10 eV at typical operating values
 $(T \sim 40 \text{ mK}, C \sim 20 \text{ pJ/K}, \alpha \sim 50, n = 5)$
K. D. Irwin and G. C. Hilton, Topics Appl. Phys. 99, 63-149 (2005)

Bradford Welliver (UC Berkeley)

- y threshold and resolution for LMO
- (keV) detection at Q-value due to scintillation
- 100 eV (FWHM) threshold for light sensor

g resolution is important

- v $\beta\beta$ decays in ¹⁰⁰Mo (T_{1/2} = 7.1 x 10¹⁸ y)
- leup from 2**vββ** decays become a background
- equires rise times ~ 150µs or better Chernyak, D.M. et. al, Eur. Phys. J. C (2012) 72:1989
- itive Electrothermal feedback keeps TES stable and decreases sensor constant => faster pulses

TES: Initial Development

- Investigate control of Tc via proximity effect
 - Normal metal on superconducting layer suppresses Tc
 - Device: IrPt bilayer
- Collaboration between UCB + LBNL + ANL
 - Sputtering fabrication at Argonne
 - Test facility at UCB and ANL

IrPt chips (100nm/80 nm) in a sample holder

- T_c: 20mK 110 mK demonstrated with IrPt chips
- T_c stable over time repeated measurement of chips gives consistent T_c

Bradford Welliver (UC Berkeley)

7

TES: Light Detectors

Schematic thermal model for TES light detector

- Tuning TES coupling to Si wafer and wafer coupling to bath is important for optimal operation
- Sapphire used for weak link
 - wafer glued to sapphire, sapphire clamped to holder
- Adjustable Cu clamps can allow adjustment for link to bath
- Clamps are coated in Ge varnish to provide electrical isolation

Bradford Welliver (UC Berkeley)

- IrPt bilayer deposited on Si wafer (5.08 cm dia., 275 µm width)
- Variable TES sizes: 300-500 µm x 300-500 µm
- Nb leads to Al wire bonding pads

PM21 2022.05.26

Bradford Welliver (UC Berkeley)

TES LD IV Characterization

- UCB test facility Oxford Triton 400 dry dilution fridge
- 4 Magnicon SQUIDs + 1 noise thermometer

- TES power in biased region is constant but varies depending on temperature
- Would like to increase G to improve sensor operation

- Sweep bias voltage to produce output response (IV measurement)
- Provide information on load resistance, TES normal resistance, Tc, and thermal conductivity

Campaign to Improve GTES

``

Cross-section view of TES

Pt 40 to 80 nm

Si substrate

Au 150 to 200 nm

- Small pulses seen with plain IrPt TES
 - Relatively weak coupling of TES to absorber improved by adding Au surfaces near the TES
 - 4 TES with various Au pad sizes deposited onto single wafer for study

Campaign to Improve GTES

- Clear improvement in thermal conductivity with addition of Au pads
- For the devices n is between 4 and 5
 - n = 4: Kapitza-boundary resistance
 - n = 5: electron-phonon decoupling

Bradford Welliver (UC Berkeley)

• TES normal resistance has slight suppression with more Au

Tc slightly lower with smaller Au

• Bare IrPt shows lowest Tc => excess noise with less strong coupling to absorber

 Current designs under test are 300 µm x 300 µm IrPt (100/60 nm or 45/20 nm) with Au pads

Pulse Characterization

- Installed several fiber optic cables in cryostat
- Inject LED light pulses (λ = 600 nm) to study device timing and energy resolution

Bradford Welliver (UC Berkeley)

Fiber Optic cables

Timing Resolution

- between pulses in LD
- pileup rejection

Bradford Welliver (UC Berkeley)

Distribution of Δt between two consecutive pulses

Energy Resolution

- Use LED pulses again
- Characterize resolution as function of energy with photon statistics
- Baseline noise at ~50 eV

 σ_{F} vs Energy

Energy Resolution & AR Coating

- Use LED pulses again
- Characterize resolution as function of energy with photon statistics
- Baseline noise at ~50 eV

- Also testing anti-reflective coating:
 - ~68nm of Si₃N₄ backside only
- Expected Reflectance: < 3% (λ : 400-700) nm) and < 0.5% (λ : 550-600 nm)
- Observe no significant change to TES performance with presence of AR coating

 σ_{F} vs Energy

	Risetime (µs)	Decaytime (µs)	Energ Resolutio
AR Coating	200	770	50
No AR Coating	200	880	82

Pulse shape and detector energy resolution

⁵⁵Fe & Phonon Simulation

- We also expose LD to a ⁵⁵Fe source for absolute calibratio
- Disagreement with LED calibration
- Highly non-Gaussian shape
- Simulation work on phonon propagation to attempt to understand this and position dependence

Bradford Welliver (UC Berkeley)

16

Scaling up for CUPID & Beyond

- CUPID: ~3000 TES sensors for both light detectors + crystal readout
- CUPID-1T: O(10k) channels
- Minimize heat load from SQUIDs + cabling
- Frequency domain multiplexing
- Small multiplexing factors on the order of 10

Multiplexing

- 10 resonators with $L \sim 4 \mu H$ and variable C
- Lithographic spiral inductors with interdigitated capacitors on Si substrate
- Cross talk expected < 0.4%
- Resonance Q-factor ~ 100kHz
- PCB with resonator at 700 mK in magnetic shield
- Superconducting Al traces on Kapton to connect TES to MUX chip

Conclusions

- TES R&D progress from ANL, UCB, LBL collaboration
- Successful campaign to improve G via Au pads
- Energy scale calibration with ⁵⁵Fe + photon statistics (LED pulses)
- ~50 eV baseline resolution would meet CUPID energy threshold requirement
- Timing resolution $\sim 20 \ \mu s \&$ fast rise times satisfy CUPID requirements for $2v\beta\beta$ pileup rejection
- Further tests underway to optimize TES design, improve in situ. noise, study position dependence, and implement multiplexing

Thank You

Bradford Welliver (UC Berkeley)

CUPID-Mo

- Operated at Laboratoire Souterrain de Modane (LSM) in the EDELWEISS cryostat
- 20x ~210 g cylindrical Li₂¹⁰⁰MoO₄ (LMO) crystals (ø44 mm x 45mm) with ¹⁰⁰Mo enriched to ~97%
- Operated as scintillating calorimeters with neutron transmutation doped (NTD) thermistors for readout
- ~20 mK operation March 2019 July 2020
- Ge wafer with SiO anti-reflective coating for light detectors (LD)

Parameter	LMO	LD			
R _{NTD} (MΩ)	1.4	0.8			
Rise time (ms)	24	4			
Decay time (ms)	300	9			
Baseline Resolution (keV FWHM)	2.0	0.15			
		European Physical Journal C 80, 44 (2020)			

Timing Resolution

Bradford Welliver (UC Berkeley)

 Allows for pulse shape discrimination for pileup events

23

0.124

Complex Impedance Transfer function

- Suggests we have about 1 uH of parasitic input line inductance
- Normal and load resistances agree very nicely with IV data

• Required for full electrothermal characterization

Bradford Welliver (UC Berkeley)

17.5

TES LD Timing

- Send heater pulses with variable time separation
- Examine timing resolution and pileup
- Pulses for a given train have fixed time separation
 - Can be used to give approximation of time resolution

Bradford Welliver (UC Berkeley)

25

TES LD Timing

 Pileup discrimination needs to be quantified beyond simple 'by-eye' examination 	-0.006 -0.0065 -0.007
 Timing only examined in 32 mK data 	-0.0075 -0.008 -0.0085
• This is very close to device T_c	-0.009
	-0.0090

Studies at lower temperature underway

28

TES Energy Measurements

- Attempt to get idea of phonon collection efficiency by using cosmic ray muons
- 2 days of data taken with scintillating muon paddle placed ~1.5 m below TES

Bradford Welliver (UC Berkeley)

- Vertically traveling muons will deposit ~ 71 keV in 275 μm of Si

• Integrate total power through the TES pulse => Gives a rough estimate of energy through

$$(L - V) \int \delta i(t) dt + R_L \int \delta i(t)^2 dt$$

Using ETF integral muon peak located around 2 keV

Pulse Measurements

- Run LED pulses alongside 55Fe calibration
- Allows rough calibration of LED energy scale based on a linear calibration from the 5.9 keV 55Fe peak
- 0.0025 • Risetime ~ 75 µs 0.002 0.0015 Decaytime ~ 0.001 lms 0.0005 0 3000

2000

1000

Pulse Measurements

- Remove 55Fe source and examine LED only
- Retrofit new active vibration dampening system between measurements
- Lower incident energy of LED pulses
- 7 LED pulses of duration 250 2750 ns
 - ~ 500 eV 3500 eV

Pulse Shape

- LED pulses on TES at 15.4 mK, TES resistanc 🖑 $200 \text{ m}\Omega$
- Risetimes are fast (<100 µs)
- Decaytimes ~ 1ms
 - Amplitude dependence possibly due to noise
- Walking average pulses:
 - No more amplitude dependence
 - Large Au Pad:
 - Risetime ~71 µs, decaytime ~1.5 ms
 - Small Au Pad:
 - Risetime ~61 µs, decaytime ~ 0.73 ms o

TES Energy Measurements

- Examine cosmogenic muons
- Scintillating muon paddle placed ~1.5 m below TES => 2 days of operation
- Amplitude spectrum shows broad cosmogenic muon peak
- Fit with convolution of Gaussian + Landau function
 - Gaussian for detector resolution
 - Landau for muon interactions with Si wafer

55Fe Calibration

- 55Fe source installed below wafer
- Resolution 35% (FWHM) at 5.9 keV
 - Pileup high intensity source
 - Vibrations

Pulse Measurements

•
$$\sigma_E^2 = \sigma_{noise}^2 + \sigma_{stoch.}^2 E$$

TES LD Timing

• Timing resolution $\sigma_t \sim 9 \mu s$

Bradford Welliver (UC Berkeley)

- Generate a train of LED pulses with some separation time >> decay time
- Examine distribution of times between some set of subsequent pulses in TES response
- Here LED pulses injected with frequency of 30 Hz
- Distribution is peaked at 33 ms with width 8.7 µs
- Pileup studies still needed but previous iterations of slower TES showed $< 70 \ \mu s$

PM21 2022.05.26

TES Requirements

- Change in TES current response is relatively large...
 - ...but absolutely small
- Use SQUIDs to amplify signal
 - Default operation is 1 SQUID per TES
- Requires magnetic shielding
- Minimize noise by moving SQUIDs closer to TES
- Power dissipation
 - Magnicon SQUID: 1 nW
 - Shunt Resistor: 20 pW
- Scaling up to CUORE sized electronics would require O(µW) cooling power!

