Capacitively Coupled LAPPDs with 2D Pixelated Readout Planes for Ring Imaging Cherenkov Applications in High Energy and Nuclear Physics Experiments

A. Kiselev¹, M. Alfred⁶, M. Aviles⁸, R. Alrashidi⁵, A. Alsayegh⁵, B. Azmoun¹, S. Butler⁸, M. Chiu¹, T. Cremer⁸, K. Dehmelt³, A. Deshpande³, M. Foley⁸, P. Garg³, C. Hamel⁸, M. Harvey⁷, X. He², T. Hemmick³, A. Holt⁶, S. Kuudaar⁵, A. Lyashenko⁸, M. Minot⁸, L. Mwibanda⁵, S. Nelson⁵, S. Park⁹, M. Popecki⁸, M.L. Purschke¹, M. Sarsour², C. Scarlett⁵, B. Schmookler³, M. Stochaj⁸, C. Walne⁸, P. Whitney⁸, C. Woody¹, J. Xie⁴

¹Brookhaven National Laboratory, ²Georgia State University, ³Stony Brook University, ⁴Argonne National Laboratory, ⁵Florida A&M University, ⁶Howard University, ⁷Texas Southern University, ⁸Incom Inc., ⁹Mississippi State University

15th Pisa Meeting on Advanced Detectors May 22-28, 2022, La Biodola – Isola d'Elba (Italy)

Motivation

- An affordable large area finely pixelated photosensor would be greatly appreciated by the NP and HEP experimental communities
- Incom Gen II LAPPDs is a promising candidate
 - 10x10 cm² or 20x20 cm² active area
 - Expected to be (very) cost efficient in mass production
 - High quantum efficiency and uniform high gain
 - User-defined pixellation scheme: unprecedented flexibility
 - Single-photon timing resolution is preserved on a ~50ps level

But: a fine (few mm pitch) pixellation needs to be confirmed!

Gen II: capacitively coupled LAPPD

- Conventional high-resolution timing sensors for single photon detection such as MaPMTs, [MCP-PMTs,] SiPMs :
- Using capacitively coupled LAPPDs one can do it differently:

One photon – one pixel hit

One photon – a multi-pixel cluster

Manufacturer defined (square) pixels

Spatial resolution σ is limited by ~pitch/V12

Channel count for σ ~ 1mm (~3.5 mm pixels) is ~ 10^5 / m^2

3 mm pixels, rms ~ 3.5 mm [BNL test stand data]

User defined pixel readout board

Spatial resolution σ can be times higher than pitch/V12 Channel count for $\sigma \sim 1$ mm resolution: perhaps $\sim 10^4$ / m²

Focus of this talk: Gen II LAPPD pixellation via custom readout board design

Lab measurements at Brookhaven

Test setup

- Remotely controlled XYZ-stages
- 420nm pulsed "picosecond" laser (spot size <100 μm)
- A variety of multi-pattern pixelated readout boards

•	·	•		
•				
·	·			
•			•	
•		10	•	

here: all 3mm pitch

Test setup

- Light-tight enclosure
- Up to 320 DRS4 channels (V1742 digitizers)
- MCX to high-density Samtec adapter cards

Modular setup: it takes one only half an hour to exchange (or rotate) the readout board

PCB stack details & cross-talk evaluation

are

- Multi-layer stack-up; through vias; isolated traces
- Worst case X-talk ~few % level

Spatial resolution with the 3 mm square pixels

8x8 field with 3mm pixels, connected to a pair of V1742s

- "Single-photon" mode
 - ~10 mV signals

- Gen II LAPPD tile #97 provided by Incom
 - 2mm thick ceramic base

Photo cathode	2375 V		
MCP#1 top	2300 V		
MCP#1 bottom	1375 V		
MCP#2 top	1175 V		
MCP#2 bottom	250 V		

У▲

~500 µm width Number of events 137.45 ± 4.83 Constant 160 Mean 0.59 ± 0.01 Sigma 0.47 ± 0.01 140 120 100 80 60 40 20 -1 0 1 Residuals with a fixed laser position, [mm]

Typical single photon cluster has RMS ~ 3.5 mm

2D zigzag pixels with a 6 mm pitch

Beam test at Fermilab in June 2021

(BNL, Incom Inc., Argonne, GSU, Stony Brook & other groups)

Experimental setup (Fermilab Test Beam Facility)

The same setup as in the lab, but instead of laser use *a thick aspheric lens* as a well controlled Cherenkov light source

Pixel pattern & accumulated single photon XY-coordinates

- Off-the-shelf component
- (Almost) no stray photons
- To first order no need in tracking
- The used model (Edmund Optics #67-265, EFL 20.0mm) produces a crisp ~76mm diameter ring at the focal plane

Cherenkov ring radius resolution

Single event with multiple photon clusters

 Yes, one can measure single Cherenkov photons with sub-mm spatial resolution using pixelated Gen II LAPPDs!

Paradigm change in the Cherenkov ring imaging data analysis: overlapping clusters rather than single pixel hits

Summary and Outlook

Summary

- Proof of principle measurements confirming feasibility of Gen II LAPPD use for single photon detection in Cherenkov imaging applications are performed in the test bench setup and with a particle beam
- Several ideas for readout board optimization were tried out, in terms of the spatial resolution performance, cross talk suppression and instrumented channel count optimization
- Further work:
 - Additional readout board optimization for high resolution timing
 - Perhaps more advanced pixellation schemes (redundant strip configurations, mixed timing & spatial coordinate measurement geometries, etc.) can be considered if needed
 - Practical applications in the scope of EIC detector R&D program
 - On-board electronics integration
 - TOF PET application?

Next beam test campaign @ Fermilab: June 2022

Experimental setup at Fermilab in June 2022

G1.. G4 – COMPASS GEM reference tracker

- A new 20cm Gen II LAPPD
 - New spacer configuration 😕
 - 10 μm pore MCPs
 - 2 mm thin ceramic base plate and short ceramic walls
 - Na₂KSb photocathode
 - Window material -> UV grade quartz
 - → Being sealed now; expected at BNL end of May
- 10cm Gen II HRPPD of a similar build (?)

June 2022 beam test: readout boards

An attempt to demonstrate a *simultaneous* ring imaging and time-of-flight performance

LAPPD workshop series

Incom Inc.

LAPPD Workshop

Monday 21 Mar 2022, 08:00 → 12:00 America/New_York

2-