

Neutron spectroscopy: The case of the Spherical Proportional Counter

<u>I. Manthos</u>¹, I. Giomataris², I. Katsioulas¹, P. Knights¹, T. Neep¹, K. Nikolopoulos¹, T. Papaevengelou² and R. Ward¹

¹ University of Birmingham, School of Physics and Astronomy, Birmingham, United Kingdom ² CEA-Saclay, IRFU, Gif-sur-Yvette, France

15th Pisa Meeting on Advanced Detectors 27/5/2022, Elba Island, Italy

This research has been funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreements No 845168 (neutronSphere), No 841261 (DarkSphere) and No 101026519 (GaGARin).

Gaseous Detectors

Neutron spectroscopy with the Spherical Proportional Counter

Dark matter underground experiments

- MeV neutrons mimic WIMP signals in the region of interest for Dark Matter detection
 - Sources: Radioactivity of cavern, muon induced hadronic and electromagnetic showers (cosmic rays)
 - Elastic scattering with target nuclei of gas, interaction with detector material
- Neutron rejection: shielding and use of high-purity materials.
- Data analysis require an estimation of the neutron background expected in order to compare with the observed number of events.

Current neutron detector status

³He proportional counters

n + ³He → ³H + p + 765 keV

Efficient for thermal and fast neutrons, low efficiency in γ -rays

Wall effect → high pressure (impractical) ³He extremely expensive

The Spherical Proportional Counter

Electric field scales as 1/r²

• Divided into "drift" and "amplification" regions

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

Capacitance independent of detector size

Low electronic noise

$$C=4\piarepsilon_0rac{r_cr_a}{r_c-r_a}pprox 4\piarepsilon_0r_a\sim 1{
m pF}$$
 .

- Large gain Single e- threshold
- Maximum volume-to-surface ratio
- High pressure operation
- Simple, robust design with a flexibility in target gas
- Applications in n-spectroscopy to DM!

 r_c = cathode radius r_a = anode radius

I.Giomataris et al, JINST, 2008, P09007 I.Katsioulas et al, JINST, 13, 2018, no.11, P11006

15th Pisa Meeting on Advanced Detectors

Neutron detection with the Spherical Proportional Counter

- Non-toxic
- Non-flammable
- Simple and robust setup
- Easy deployment and operation
- Cost efficient
- Wall effect suppressed due to higher atomic number of N₂ relative to ³He → lower pressure
- Good efficiency in detecting thermal neutrons in large volumes
- Low γ-ray efficiency
- Spectroscopic measurement of neutrons

Nitrogen as target

 ^{14}N + n \rightarrow ^{14}C + p + 625 keV, $\sigma_{th}\text{=}$ 1.83 b

 ^{14}N + n \rightarrow ^{11}B + α - 159 keV, thres=1.7 MeV

Neutron detection with the Spherical Proportional Counter Proof of principle

Limiting Factors:

- Wall effect (i.e. recoiling particle escape the active volume)
- Sparking/Stability
- Low pressure operation (up to 0.5 bar)
- Impurities
- Charge collection efficiency

Bougamont, E et al (2017). NIM A, 847, 10–14

Neutron detection with the Spherical Proportional Counter Instrumentation advancements

Resistive Multi-anode sensor (ACHINOS)

- Decouples drift and amplification fields
 - Small anode size \rightarrow high gain
 - More anodes → Efficient charge collection
- Allows for increased target mass
 - Larger volume
 - Higher pressure
- Improves detector fiducialisation

Gas purification techniques

 Custom-made filter with negligible Rn emanation

<u>I. Katsioulas et al, 2018 JINST, 13, 11, P11006</u> I. Giomataris et al 2020 JINST 15 P11023

sea urchin

Ελληνικά αχινός

achinós

Simulation of the detector response

UoB simulation framework for complete simulation of a detection setup

- GEANT4 for particle transport in a geometry and their interaction with materials
- FEM simulation (ANSYS, COMSOL) of electromagnetic fields
- Garfield++ for the generation, drift and multiplication of primary electrons and signal generation

I. Katsioulas et al 2020 JINST 15 C06013

i.manthos@bham.ac.uk

✓ Differentiate protons from alphas

✓ Identify possible wall effect

The Graphite stack @ University of Birmingham

i.manthos@bham.ac.uk

Investigate the capability of the SPC to detect fast neutrons and neutrons thermalized by the graphite.

Spherical Proportional Counter

- 30 cm Ø
- N₂ gas filling

Multi-anode sensor

- 11 anodes
- 1mm Ø
- Reading in 2 channels (near far)

²⁴¹Am⁹Be neutron source

 $A = 2.6 \times 10^6 Bq$

Calibration measurements

.

٠

- Thermal and fast neutrons at 1 bar and [3.6, 4.2] kV bias
- Thermal and fast neutrons at 1.5 bar and 4.5 kV bias
- Thermal neutrons at 1.8 bar and 6 kV bias

Neutron measurements with the Spherical Proportional Counter Calibration of the detector

i.manthos@bham.ac.uk

15th Pisa Meeting on Advanced Detectors

Neutron measurements with the Spherical Proportional Counter

i.manthos@bham.ac.uk

10

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

1 bar N₂, 3.6 kV

Response to thermal neutrons

 Thermal neutrons peak follows exponential form for various anode voltages at 1 bar N₂

i.manthos@bham.ac.uk

15th Pisa Meeting on Advanced Detectors

Simulation of the detector response

Simulation study (MCNP 6.1): Probability of ٠ each neutron to reach detector volume after thermalized in graphite stack ($\sim 5 \times 10^{-3}$)

Pulse Amplitude [ADU]

 Detector response to thermal neutrons with 1 bar N₂ and 3.6 kV bias voltage

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

 $1.5 \text{ bar } N_2, 4.5 \text{ kV}$

i.manthos@bham.ac.uk

15th Pisa Meeting on Advanced Detectors

Thermal Neutrons - Peak Amplitude [ADU]

Neutron measurements with the Spherical Proportional Counter ²⁴¹Am⁹Be neutron source

1.8 bar N₂, 6 kV

Thermal neutrons detection

²¹⁰Po alpha (5.4MeV) sample, inside the detector \rightarrow energy reference

Neutron measurements at MC40 cyclotron

Spectroscopic measurement of fast neutrons

⁹Be target on deuterium beamline

- 5.90±0.08 MeV deuterons
- ⁹Be(d,n) reaction
- Same detector setup
- Moderators used to study neutron detection (paraffin, Polyethylene +5% Boron, lead)

i.manthos@bham.ac.uk

Neutron measurements at MC40 cyclotron

Spectroscopic measurement of fast neutrons

Neutron measurements at MC40 cyclotron

Spectroscopic measurement of fast neutrons

Neutron measurements at the Boulby Underground Laboratory

- Underground facility 1100 m under surface, North Yorkshire (UK)
- Instrumentation R&D and neutron measurements at controlled environment
- 30cm Ø Spherical Proportional Counter installed and operating
- ²⁵²Cf neutron source available
- Measurements and analysis ongoing

Expected thermalized neutron background flux with 2 bar N₂ filling with...

	60 cm SPC	140 cm SPC
neutrons/day	2.2	11.4
neutrons/month	67.1	351.9
neutrons/year	791.9	4142.8

Birmingham

Gaseous Detectors

Science and Technology Facilities Council

Boulby Underground Laboratory

Neutron detection with the Spherical Proportional Counter Summary

- Neutron measurements set up accomplished
- Neutron detection performed in the Graphite stack and at the MC40 cyclotron facilities in Birmingham
- Corresponding measurements in Boulby
- Mono-energetic neutron measurement (e.g. @ Demokritos, Greece)

Back up slides

Neutron detection with gaseous detectors Current status

³He proportional counters

Efficient for thermal and fast neutrons, low efficiency in y-rays

<u>Alternative technologies:</u>

BF₃-based proportional counters

¹⁰B lined tubes

Bulk scintillators

⁶Li coated Ar-filled detectors

i.manthos@bham.ac.uk

Toxic and corrosive

Wall effect \rightarrow high pressure (impractical)

³He extremely expensive

Poor efficiency, high cost

Complicated response function, limited radiation hardness, insufficient γ/n discrimination

degraded energy resolution

 $n + {}^{3}He \rightarrow {}^{3}H + p + 765 \text{ keV}$