

A Gamma-ray Detection Module for BNCT Dose Measurements

A. Caracciolo^{1,2}, D. Di Vita^{1,2}, T. Ferri^{1,2}, C. Salvi^{1,2}, M. Carminati^{1,2}, N. Protti^{3,4}, S. Altieri^{3,4}, F.Camera^{2,5} and <u>C. Fiorini^{1,2}</u>

¹Politecnico di Milano, Dipartimento di Informazione, Elettronica and Bioingegneria, Milano, Italy ²INFN, Sezione di Milano, Milano, Italy ³Università di Pavia, Dipartimento di Fisica, Pavia, Italy ⁴INFN, Sezione di Pavia, Pavia, Italy ⁵Università degli Studi di Milano, Dipartimento di Fisica, Milano, Italy

- Boron Neutron Capture Therapy and dose estimation (with γ -rays)
- The BENEDICTE detector and electronics
- Boron concentration measurements
- Preliminary tests of position sensitivity
- Future work

Boron Neutron Capture Therapy (BNCT)

Courtesy: S.Rossi (CNAO, Italy)

Boron compounds are selectively absorbed by cancer cells.

- Tissues are irradiated by a neutron beam.
- Neutron capture by ¹⁰B generates high-LET secondary particles, destroying cancer cells and sparing normal cells.
- Research approach for recurrent and metastasized tumours.

3

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Accelerator-based neutron sources

- BNCT previously based on nuclear reactors.
- Accelerator-based neutron sources available (Japan and Finland).
- Collaboration agreement between CNAO and TLS signed in 2020, installation >2023.

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Dose measurement by Imaging boron-captures γ -ray emission

Main detector specifications:

- Good efficiency and energy resolution at 478keV (to separate it from 511keV annihilation photons)
- Spatial resolution: 5-10mm (limited by the collimator)
- Possibly, extended efficiency up to 2.2MeV (H-capture) for neutron flux estimation

Detection of emitted 478keV gamma photons may let to estimate ¹⁰B neutron captures and support therapeutic outcome.

T. Kobayashi et al. Med Phys. 2000.

Carlo Fiorini, Politecnico di Milano and INFN, Italy

The **BENEDICTE** detector

BENEdiCTE (Boron Enhanced NEutron CapTurE) is a gamma-ray detection module, based on a LaBr₃:Ce scintillator crystal optically coupled with a matrix of 8x8 Silicon Photomultipliers. The SiPMs are read out by 4 custom 16-channels GAMMA ASICs.

Carlo Fiorini, Politecnico di Milano and INFN, Italy

The **BENEDICTE** readout electronics

Carlo Fiorini, Politecnico di Milano and INFN, Italy

The GAMMA ASIC

1. Compatible with large SiPMs (~tens fF); 2. Gain modulation allows for 84dB Dynamic Range on each channel

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Pisa Meeting 2022, 24-05-22

8

478keV vs. 511keV separation challenge:

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Pisa Meeting 2022, 24-05-22

INFŃ

Measurements at TRIGA MARK II nuclear reactor in Pavia (Italy)

Unshielded

Shielded

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Spectroscopy measurements

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Pisa Meeting 2022, 24-05-22

11

Measurements with ¹⁰B at different concentrations

- 1×10⁵ n/cm²/s neutron flux (vs. 10⁹ n/cm²/s expected with clinical flux).
- 15min. measurement.
- Measurements with vial alone and vial inside a water phantom show similar results.
- Minimum Boron concentration of 62ppm measured.
- Events in the 478 keV region detected during the 0 ppm measurement. Topic under investigation.

12

Carlo Fiorini, Politecnico di Milano and INFN, Italy

BeNEdiCTE module for imaging (square LaBr₃ 50x50x20 mm³)

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Pisa Meeting 2022, 24-05-22

Position sensitivity test with scanned ¹³⁷Cs source (662keV)

Collimated ¹³⁷Cs Photon Beam (**1 mm**)

Benedicte detector

0

3.12 mm

256 points

Carlo Fiorini, Politecnico di Milano and INFN, Italy

15

TRUE PREDICTION

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Pisa Meeting 2022, 24-05-22

X-axis Test Average Accuracy 65%]	Including adjacent pixels					90%				
1	74,48%	19,79%	9,62%	2,09%	0,75%	0,38%	0,39%	0,11%	0,14%	0,15%	0,05%	0,10%	0,09%	0,10%	0,05%	0,16%	74.48%	94.85%
2	20,37%	66,24%	19,49%	4,95%	, 1,33%	, 0,78%	, 0,36%	, 0,17%	, 0,17%	, 0,10%	, 0,05%	0,09%	0,09%	, 0,05%	0,08%	0,12%	66.24%	96.94%
3	2,30%	10,91%	56,71%	15,95%	3,18%	1,01%	0,48%	0,12%	0,29%	0,22%	0,05%	0,01%	0,06%	0,13%	0,08%	0,16%	56.71%	86.47%
4	0,71%	1,51%	10,27%	60,28%	12,49%	3,25%	1,14%	0,36%	0,53%	0,25%	0,05%	0,13%	0,14%	0,06%	0,09%	0,14%	60.28%	86.54%
5	0,25%	0,46%	1,69%	10,31%	65,59%	15,15%	2,94%	1,01%	0,67%	0,45%	0,13%	0,19%	0,07%	0,10%	0,14%	0,28%	65,59%	90,04%
6	0,10%	0,15%	0,38%	3,09%	11,96%	63,97%	13,05%	2,54%	1,37%	0,74%	0,34%	0,21%	0,13%	0,13%	0,11%	0,06%	63,97%	89,12%
7	0,13%	0,07%	0,32%	1,10%	2,48%	10,01%	65,45%	13,94%	3,44%	1,45%	0,55%	0,27%	0,18%	0,16%	0,17%	0,06%	65,45%	89,80%
8	0,05%	0,06%	0,18%	0,73%	0,90%	2,70%	11,31%	66,11%	13,54%	3,52%	1,10%	0,66%	0,28%	0,16%	0,18%	0,10%	66,11%	91,30%
9	0,28%	0,09%	0,19%	0,41%	0,43%	1,20%	2,61%	11,25%	64,83%	14,58%	2,89%	1,37%	0,44%	0,28%	0,17%	0,12%	64,83%	89,18%
10	0,50%	0,11%	0,18%	0,33%	0,21%	0,46%	0,78%	2,31%	10,82%	62,34%	12,19%	3,26%	0,81%	0,36%	0,23%	0,14%	62,34%	88,17%
11	0,20%	0,02%	0,22%	0,18%	0,16%	0,41%	0,59%	0,96%	1,99%	11,25%	65,44%	13,58%	2,58%	0,81%	0,26%	0,14%	65,44%	89,71%
12	0,10%	0,09%	0,22%	0,23%	0,13%	0,19%	0,27%	0,42%	0,72%	2,97%	12,09%	62,90%	12,01%	1,88%	0,79%	0,20%	62,90%	87,57%
13	0,10%	0,15%	0,23%	0,09%	0,10%	0,16%	0,17%	0,26%	0,55%	1,04%	3,07%	11,09%	63,30%	10,04%	1,75%	0,62%	63,30%	89,67%
14	0,20%	0,13%	0,10%	0,07%	0,10%	0,18%	0,17%	0,20%	0,38%	0,47%	0,96%	3,41%	14,35%	67,36%	10,68%	2,56%	67,36%	90,87%
15	0,15%	0,06%	0,14%	0,12%	0,08%	0,10%	0,17%	0,06%	0,34%	0,32%	0,63%	1,57%	3,61%	13,48%	60,95%	20,23%	60,95%	95,93%
16	0,08%	0,17%	0,07%	0,08%	0,10%	0,04%	0,11%	0,17%	0,24%	0,16%	0,42%	1,16%	1,86%	4,90%	24,30%	/4,93%	74,93%	95,15%
	1	2	3	4	5	6	7			10	11	12	13	14	15	16		

Similar result for Y coordinate

Results: two irradiated points reconstruction

Carlo Fiorini, Politecnico di Milano and INFN, Italy

- Collimator development and imaging tests on ¹⁰B samples
- Study of detector shielding
- Detector development for NCEPT (Neutron Capture Enhanced Particle Therapy) with ANSTO (Australia). (A.Chacon, et al., Scientific Reports volume 12, 5863, 2022.)
- Embedding ML reconstruction in hardware accellerator: towards analog Neural Network in ASIC (submitted to IEEE NSS-MIC 2022).

Carlo Fiorini, Politecnico di Milano and INFN, Italy

Thank you for your attention!

Carlo Fiorini, Politecnico di Milano and INFN, Italy

