

Trigger and data acquisition system of the High Energy Particle Detector on board the CSES-02 satellite

Valentina Scotti

scottiv@na.infn.it

Università degli Studi di Napoli Federico II INFN - Sezione di Napoli

for the CSES-Limadou Collaboration

Outline

- ☐ The CSES-02 satellite
- ☐ The High Energy Particle Detector (HEPD-02)
- ☐ The electronics of the HEPD-02
- ☐ The trigger and data acquisition system: requirements and capabilities
- ☐ Status and outlook

CSES-02 satellite

CSES-02: China Seismo-Electromagnetic Satellite

- Total Mass: 900 kg
- Orbit: 500 km, sun-synchronous, 97° inclination
 - Same as CSES-01 (launched in 2018), 180° phase difference
 - Orbit maneuver capability
 - Earth-oriented stabilization system
- Design life cycle > 6 years
- Launch expected in 2023
- Equipped with several payloads for electromagnetic and plasma measurements in the Van Allen belts
 - ➤ **HEPD-02**: payload for (relatively) High-Energy Particle Detection
 - Main target: energy spectrum of electrons and protons in the Van Allen belts
 - Full time operational

HEPD-02

Low energy Cosmic Rays with energy 3 ÷ 300 MeV

For each particle:

- ✓ identification (proton, electron, nucleus)
- ✓ energy
- ✓ pitch angle

Goal: maximize the geometrical acceptance according to weight and power budgets constraints

Parameter	Value			
Energy Range	Electrons: 3-100 MeV			
	Protons: 30-200 MeV			
Angular resolution	Electrons: $< 10^{\circ}$ with E > 3 MeV			
Energy resolution	Electrons: $< 10\%$ with E>5 MeV			
Pointing	Zenith			
Operative temperature	-10°+35°			
Mass	< 45 kg			
Power Consumption	< 45 W			
Data budget	< 100 Gb/day			

The instruments

- Trigger: 2 crossed layers of plastic scintillators [18 PMT]
- Tracker: 3 layers of CMOS Monolithic Active Pixel Sensor
 - after the 1st trigger plane to limit the effect of multiple scattering on the direction measurement
- Calorimeter: 12 layers of 12 mm thick plastic scintillator (EJ-200) planes [24 PMT]
 - 2 crossed layers segmented into 3 bars of LYSO scintillator crystals (high LY, slower) [12 PMT]
- Veto: (not shown) 4 lateral + 1 bottom planes of 8 mm-thick plastic scintillators, surrounding the calorimeter [10 PMT]

PMT: Hamamatsu R9880-210

The trigger detector

2 crossed layers of scintillator planes EJ-200 enclosing the tracker

- **TR1:** segmented into 5 counters read out by light-guides connected to PMTs: to match the tracking modules
 - 2 mm thick: to minimize multiple scattering and allow for a low threshold
- **TR2:** segmented into 4 ticker bars: to give a good measure of the energy loss of charged particles

All counters are covered with a reflective coating and read out by two PMTs

Trigger logic:

- Flexible: combinations of signals from TR1, TR2 and CALO planes form HEPD trigger configuration which can be selected during the flight
- Strong: to cope with increased fluxes of particles at polar orbits

TR2: $150 \times 150 \times 8 \text{ mm}^3$

The tracker

3 sensitive planes of 5 independent tracking modules Monolithic Active Pixel Sensor (MAPS):

- based on the MAPS developed for ALICE experiment at LHC
- ✓ reduces systematic uncertainties on tracking: up to 6x single-hit resolution
- ✓ no multi-hit degeneracy
- Each plane has 10 sensors of 512x1024 pixels in 15x30 mm²
- Control and read-out based on ultra-thin (180 mm) flexible printed circuits

Challenges for use in Space:

- Light support (to avoid multiple scattering)
- Support must withstand launch acceleration and vibrations
- Heat dissipation and material outgassing in vacuum
- Limited power budget

The whole tracker is formed by 5 turrets:

- 15 staves
- 150 MAPS
- 80 Mpixel in 3 planes

The electronics

Data acquisition:

- Tracker detector (T-DAQ)
- Scintillator detectors: trigger, calorimeter and veto (Trigger Board)

Managing and control

- Global control and data managing (DP-CU)
- LV-PS and HV-PS
- Dedicated mechanics that allow anchoring to the HEPD-02 base plate and heat dissipation
- Communication via SpaceWire Light protocol
- Embedded "HOT/COLD" redundancy
- -30°C to +50°C qualification temperature range
- Max data transfer rate from satellite = 100 Gb per day

The trigger board

Functionalities:

- Readout of 64 PMT: 2×32-channel ASICs CITIROC (Weeroc)
- Digitalization of PMT signals
- Configurable gain/trigger threshold to optimize the acceptance
- Two different configurable gain chain
- Different trigger configurations to match different orbital zones and particles
- Rate meters for each PMT and trigger configuration

From HEPD-01 to HEPD-02:

- ➤ High trigger rate at polar regions: improved trigger logic and pre-scaling
- Larger amount of acquired data: mass memory on board for buffering

Trigger board architecture

- Custom designed
- 64 channels in common for HOT and COLD sides
- On each side (H&C):
 - FPGA: MicroSemi ProASIC A3PE3000
 - 2 ASIC: CITIROC 1A Weeroc
 - 4 ADC: AD7274 (12 bits, 24 MHz)
- Signals coming from the last dinode of PMTs
 - Reduce power consumption
 - Simplify design (no inverters)
- Coaxial cables RG178 to improve noise immunity

Characterization of the read-out chain

Attenuation factor	Threshold	d Minimum amplitude (mV)	
3	250	12	
6	225	15	
20	210	35	

Minimum amplitude to get 100% trigger efficiency

- Smallest detectable input signal (square signal of 10 ns) (3% 1/3 MIP on TR1)= 17mV corresponding to pC (about 3 pe @ 10⁶ PMT gain) → 2.3 mV @Citiroc
- Min DAC threshold = 220-240
- Trigger from the HG chain
- Use of the peak detector

EM board response

HG = 75ADC vs V @ 10.0ns, 75.0hg, 7.5lg, 3.0s 4000 3500 3000 2500 ADC 2000 1500 1000 $c0_1 = (-7.76e + 00) \pm (8.06e + 00)$ $c1_1 = (5.50e + 03) \pm (2.64e + 01)$ 500 $\chi_1^2/dof = 27.70/17$ 0.6 0.2 0.4 8.0 V (V) CIT0 HG CH02 $ADC = c1_1 \cdot V + c0_1$

S/N ratio (10 ns square pulse)

$V_{imp} (\mathrm{mV})$	μ_{sig}	μ_{pdst}	σ_{pdst}	S/N
15	207.5	187.6	8.1	2.45
30	231.1	186.9	7.9	5.59
45	254.0	187.1	7.8	8.58

(c) $V_{imp} = 45 \,\mathrm{mV} \,(IMIP)$

Trigger capabilities

- ➤ Along the orbit of CSES-02 particle fluxes span several orders of magnitude
- > Data acquisition must guarantee the measurement of energy spectra with a high duty cycle
- > Capability to acquire data on the SAA by selecting appropriate trigger configurations

Trigger and DAQ of the HEPD-02 - V. Scotti

Concurrent trigger and prescaling

- ➤ Concurrent trigger configurations prescaled to match the amount of data the instrument can process and send to the ground
- Configurations optimized after scientific requirements about FoV and kind of particle, with prescaling suitably adjusted

Trigger and DAQ of the HEPD-02 - V. Scotti

Gamma-ray observation opportunity

- LYSO radioactivity background: negligible effect above 2 MeV
- HEPD-02 will be able to measure photons of energy > 2 MeV
- Trigger configuration dedicated to gamma rays tracked on a time basis of 10 milliseconds

Possibility of 10 serendipitous GRB observation per year

Status and outlook

The 1st satellite of the CSES program was launched on February 2nd, 2018 and all 8 payloads worked smoothly since then

- Data analysis is ongoing to look for correlations of particle bursts with seismic phenomena
- Space weather physics program well developed: very low-energy galactic and trapped particles
- ✓ The design of the HEPD-02 Trigger Board has been finalized and the QM is under production
- ✓ A versatile and powerful trigger system has been designed
- ✓ An intense tests program has been scheduled to target the launch in 2023

