
Marco Vignati - 26 May 2022 
Pisa Meeting on Advanced Detectors

BULLKID



BULLKID / Vignati -

Particle detection via nuclear recoils

2

impinging particle
observable:  

kinetic energy of nuclear recoiltarget nucleus



BULLKID / Vignati -

Particle detection via nuclear recoils

2

Dark Matter

next frontier: particles with mass < 1 GeV/c2

Dark Energy

Dark Matter

Matter

26.8%

4.9%

68.3%

impinging particle
observable:  

kinetic energy of nuclear recoiltarget nucleus



BULLKID / Vignati -

Particle detection via nuclear recoils

2

Dark Matter

next frontier: particles with mass < 1 GeV/c2

Dark Energy

Dark Matter

Matter

26.8%

4.9%

68.3%

Figure 3: Nuclear recoil rate due to neutrino magnetic moment scattering. We
show the recoil rate o↵ a Germanium target (left) and CaWO4 target (right) due to a
flux of Chooz Reactor neutrinos for Standard Model CE⌫NS (solid black) as well as the
contribution for a range of values of the neutrino magnetic moment µ⌫ (solid color). The
shaded green regions show the Phase 1 and Phase 2 regions of interest (with thresholds
given in Tab. 1). The dashed brown line shows the background after rejection (see Fig. 1).

The cross section for nuclear scattering from the neutrino magnetic moment µ⌫ is given
by [71]:
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This is the charge-dipole interaction, which receives a coherence enhancement from the charge
of the nucleus Z2 but which does not interfere with the Standard Model CE⌫NS interaction.
We neglect dipole-dipole interactions, which are chirality-flipping [71] and therefore incoher-
ent. The resulting cross section is proportional to the nuclear magnetic moment µN and is
typically sub-dominant. In Fig. 3, we show the nuclear recoil rate for a Germanium target
(left) and a CaWO4 target (right), comparing the Standard Model CE⌫NS rate with that
expected for a range of values of the neutrino magnetic moment µ⌫ .

In Fig. 4, we show the projected constraints on the neutrino magnetic moment as a
function of the detector exposure. On the top row we show results for the Near Site (NS)
while on the bottom row we show results for the Very Near Site (VNS). The left and right
columns show Phase 1 and Phase 2 respectively (though we remind the reader than we fix
the payload mass to the Phase 1 mass and vary only the energy threshold in this case).

Even in Phase 1, the larger Ge, Zn and Si detectors will become competitive with
current constraints from COHERENT with just a few hours exposure, with CaWO4 and
Al2O3 detectors surpassing COHERENT on timescales of a few days. Reducing the energy
threshold of the detectors (moving from the left to the right column of Fig. 4) strengthens the
constraints by roughly a factor 2 at fixed exposure. The reason for this is clear from Fig. 3:
the neutrino magnetic moment produces a spectrum which rises rapidly as E�1

R towards lower
recoil energies meaning that lowering the energy threshold enhances the NMM contribution
relative to the standard CE⌫NS signal.

We note that for exposures around 102 days, the upper curves for Ge, Zn and Si begin
to flatten, as the experiments become dominated by systematic uncertainties on the back-
grounds. At larger exposures (> 103 days), the limits begin to strengthen more rapidly once
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the payload mass to the Phase 1 mass and vary only the energy threshold in this case).
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Al2O3 detectors surpassing COHERENT on timescales of a few days. Reducing the energy
threshold of the detectors (moving from the left to the right column of Fig. 4) strengthens the
constraints by roughly a factor 2 at fixed exposure. The reason for this is clear from Fig. 3:
the neutrino magnetic moment produces a spectrum which rises rapidly as E�1
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relative to the standard CE⌫NS signal.
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Detector R&D
BULLKID:  

(phonon - KIDs)
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KID-based photon sensors:

✓ Energy threshold = 125 eV  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Silicon dice (0.3 g) 
at 10 mK out

kg mass: array of  3000 Si-dices / KIDs 
 
 

unique feature of KIDs: multiplexed readout  
several KIDs coupled to the same feedline at different frequencies

f1 =
1

L1C1
f2 =

1
L2C2

fn =
1

LnCn
…

KID 1 KID 2 KID n
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1. carving of dices in a thick silicon wafer
bottom view

3”

5 mm

0.5 mm thick surface:
- holds the structure
- hosts the KIDs

4.5 mm deep grooves
- 5.5 mm pitch
- chemical etching

side/top view

2. lithography of multiplexed KID array 

KID array
- 60 nm aluminum film
- 60 KIDs lithography

top view

Design and assembly
- 3D-printed Cu holder
- Aluminum case

3. assembly

60 dices 0.3 g each
 1 readout line

✓ 60 detectors in 1



BULLKID / Vignati -

Operation in refrigerator

9

  

Setup

   INFN Roma |  Calibration Software For NUCLEUS | Giorgio Del Castello 3

LEONI, FiberSwitch mol 1x16

CAEN, Led Driver SP5601 and SP5605
Agilent 33250ALED 


400 nm

Fiber 

switch

Optical  
fibers

Silicon dices

300 K

10 mK

Optical calibration

KIDs
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First prototype (9/2021)

👍  Proved that detector concept works 

👎  Poor uniformity across the array 

👎  Low quality factor of the resonators  
      (0.2x105, aiming at > 105)10
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Second prototype (5/2022)
• Reduced electrical x-talk (frequency spacing from 1 to 2 MHz)


• Improved film quality of the KIDs (uniform etching of the wafer surface)
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τ10−90 = 140 μs
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Readout 

Ettus X310

can MUX the entire array
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Energy 
calibration
Exploit the Poisson’s statistics of bursts 
of N optical photons of known energy 𝜖 
to extract the calibration constant k:


• 


• 


Linear fit for  and :


•

μ = k N ϵ

σ2 = σ2
0 + k2Nϵ2 = σ2

0 + kϵ ⋅ μ

σ2
0 R = kϵ

k =
R
ϵ

, ϵ(400 nm) = 3.1 eV

13
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Preliminary 
results 
μ = − 0.004 ± 0.020

σ = 1.14 ± 0.02

KID 𝜎0  
[mrad]

𝜎0  
[eV]

15 3.4±0.1 25.0±1.2

33 1.78±0.03 22.9±0.8

34 1.14±0.02 25.4±0.5

40 0.73±0.01 20.6±0.9

Next cool-down:  
cross-check with x-ray calibration, light on other channels

threshold 
~120 eV

optical cal

low-Q

excluded

optical fiber
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Mass: 
from 3” to 4” wafers


stack of wafers 

3D-printed Cu stacking prototype

Experiment
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Threshold (ongoing R&D):

1. Replace Al with Al-Ti-Al KIDs - 5x inductance

2. New KID geometries 

3. Deeper carvings for higher phonon focussing

           

carvings 
 4.5 mm

surface 
 0.5 mm

DM / ν DM / ν

KID
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Threshold (ongoing R&D):

1. Replace Al with Al-Ti-Al KIDs - 5x inductance

2. New KID geometries 

3. Deeper carvings for higher phonon focussing

           

carvings 
 4.5 mm

surface 
 0.5 mm

DM / ν DM / ν

KID

+ port the technology to Germanium wafers  
(10x neutrino x-sec, does not apply to Dark Matter)

Mass: 
from 3” to 4” wafers


stack of wafers 

3D-printed Cu stacking prototype

Experiment

now: 4/60 dices 2022: 60/60 dices


