

BULLKID

Marco Vignati - 26 May 2022 Pisa Meeting on Advanced Detectors

Particle detection via nuclear recoils

impinging particle

target nucleus

Particle detection via nuclear recoils

impinging particle

target nucleus

Dark Matter

next frontier: particles with mass $< 1 \text{ GeV/c}^2$

Particle detection via nuclear recoils

impinging particle

target nucleus

Dark Matter

next frontier: particles with mass $< 1 \text{ GeV/c}^2$

BULLKID / Vignati - 2

observable: kinetic energy of nuclear recoil

Neutrino coherent scattering ($CE\nu NS$)

reactor monitoring from safe distances

Standard Model (NSI, μ_{ν} , ...)

Requirements

Requirements

Requirements

BULLKID / Vignati - 3

Difficult to have both in the same experiment!

State of the art (solid-state detectors)

Lighter DM Lower-energy vs

State of the art (solid-state detectors)

Lighter DM Lower-energy vs

BULLKID: (phonon - KIDs)

Low energy threshold with KIDs

Kinetic Inductance Detector (KID):

- Thin film (~50 nm) superconductor at T < 200 mK
- Energy release \rightarrow Cooper-pair breaking (ΔL)
- Resonant circuit ($f_0 = 1/\sqrt{LC}$), $\Delta L \rightarrow \Delta f_0$

Low energy threshold with KIDs

Kinetic Inductance Detector (KID):

- Thin film (~50 nm) superconductor at T < 200 mK
- Energy release \rightarrow Cooper-pair breaking (ΔL)
- Resonant circuit ($f_0 = 1/\sqrt{LC}$), $\Delta L \rightarrow \Delta f_0$

2 cm L. Cardani, et al. [CALDER], SUST 31 (2018) 075002

BULLKID team

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare:

N. Casali, A. Cruciani, A. Mazzolari, M. Tamisari, V. Pettinacci;

Sapienza University of Rome

A. Ahmad, M. del Gallo Roccagiovine, D. Delicato, G. Del Castello, A.L. De Santis, M. Giammei, M. Vignati;

Institut Néel - CNRS M. Calvo, J. Goupy, A. Monfardini;

Consiglio Nazionale delle Ricerche I. Colantoni, G. Pettinari;

Ferrara University: *M. Romagnoni, V Guidi;*

Genova University *S. Di Domizio.*

BULLKID / Vignati - 6

BULLKID funded by the INFN

Large targets: phonons and multiplexing

Phonon mediation

detect phonons created by nuclear recoils in a silicon dice

Large targets: phonons and multiplexing

Phonon mediation

detect phonons created by nuclear recoils in a silicon dice

BULLKID / Vignati - 7

kg mass: array of 3000 Si-dices / KIDs

Large number of targets: BULLKID

1. carving of dices in a thick silicon wafer

- 4.5 mm deep grooves - 5.5 mm pitch - chemical etching

- 0.5 mm thick surface:
- holds the structure - hosts the KIDs

Large number of targets: BULLKID

1. carving of dices in a thick silicon wafer

2. lithography of multiplexed KID array

- 4.5 mm deep grooves - 5.5 mm pitch - chemical etching

- 0.5 mm thick surface:
- holds the structure - hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

Large number of targets: BULLKID

1. carving of dices in a thick silicon wafer

2. lithography of multiplexed KID array

- 4.5 mm deep grooves - 5.5 mm pitch - chemical etching

- 0.5 mm thick surface: holds the structure hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

BULLKID / Vignati - 8

3. assembly

Design and assembly

- 3D-printed Cu holder
- Aluminum case

60 detectors in 1

60 dices 0.3 g each 1 readout line

Operation in refrigerator

First prototype (9/2021)

Frequency scan of the KID array

BULLKID / Vignati - 10

Proved that detector concept works

- Poor uniformity across the array
- Low quality factor of the resonators $(0.2 \times 10^5, \text{ aiming at} > 10^5)$

Second prototype (5/2022)

- Reduced electrical x-talk (frequency spacing from 1 to 2 MHz)
- Improved film quality of the KIDs (uniform etching of the wafer surface)

Energy calibration

Exploit the Poisson's statistics of bursts of N optical photons of known energy ϵ to extract the calibration constant k:

•
$$\mu = k N \epsilon$$

•
$$\sigma^2 = \sigma_0^2 + k^2 N \epsilon^2 = \sigma_0^2 + k \epsilon \cdot \mu$$

Linear fit for σ_0^2 and $R = k\epsilon$:

•
$$k = \frac{R}{\epsilon}$$
, ϵ (400 nm) = 3.1 eV

BULLKID / Vignati - 13

 σ^2 (mrad²)

BULLKID / Vignati - 14

cross-check with x-ray calibration, light on other channels

BULLKID / Vignati - 15

3D-printed Cu stacking prototype

BULLKID / Vignati - 15

3D-printed Cu stacking prototype

