PDM 2022, La Biodola, 22-28 May 2022

ATHENA @ EIC

A Totally Hermetic Electron Nucleus Apparatus proposed for the Electron-Ion Collider

on behalf of the ATHENA Collaboration

The Context

The EIC, WHY?

- Ultimate understanding of QCD
 - By answering to the open questions
 - ✓ N spin structure and overall N tomography
 - ✓ Origin of the N mass
 - Evolution of the gluons in high density nuclear matter and gluon saturation

 By conjugating High Energy and High Luminosity enriched with Beam Polarization
 Several e-h colliders proposed by the community
 The EIC is an approved project !

✓ <u>...</u>

The EIC, an approved project

Initiation

Critical

Decisions

ATHENA

https://www.energy.gov/articles/ us-department-energy-selectsbrookhaven-national-laboratoryhost-major-new-nuclear-physics Department of Energy

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

JANUARY 9, 2020

Operating*

Funds

CD-0

Approve

Mission

Need

Definition

Conceptual

Design

awarded

WASHINGTON, D.C. – Today, the U.S. Department of Energy (DOE) announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility. The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion, will smash electrons into protons and heavier atomic nuclei in an effort to penetrate the mysteries of the "strong force" that binds the atomic nucleus together.

EIC

Preliminary

Design

CD-1

Approve

Alternative

Selection

and Cost

Range

The next milestones in front of the project (present projection)

- CD2/3A~ Jan. 2024 (pre-TDR needed)
- CD-3 ~ Apr. 2025 (TDR)
- CD4A ~ 2031 (start of operation)
- CD4 ~ 2033 (project completion)

INFN

and Cost Range", was awarded for the EIC on June 29, 2021.

Critical Decision-0 (CD-0),

"Approve Mission Need",

approved for the EIC on

Critical Decision-1 (CD-1),

"Approve Alternative Selection

December 19, 2019.

Project Engineering and

Design (PED) Funds

CD-2

Approve

Performance

Baseline (PB)

Execution

Final

Design

CD-3

Approve

Start of

Construction

or Execution

Construction &

PED

Funds

Construction

Operating

Funds

Closeout

CD-4

Approve

Start of Operations

or Project

Completion

4

The EIC project in a nutshell ATHENA "SPECIFICATIONS": Yellow & Blue i rings Electron spanning a wide kinematical range Electron storage ring injector synchrotron • ECM: 20 – 141 GeV On-energy High luminosity • up to 10³⁴ cm⁻² s⁻¹ 2 possible The strong hadron interaction points (large halls available) cooling facility Electron design completes the facility highly polarized e (~ 70%) beams highly polarized light A (~70%) beams collider Electron Injector (RCS Hadron Storage Ring **Electron Storage Ring** wide variety of ions: from H to U **Electron Injector Synchrotron** Possible on-energy Hadron injector ring AGS Hadron injector complex Number of interaction regions: up to 2

h-sources, acceleration, polarization, storage ring

e-sources, acceleration, polarization, storage ring

design

detector

'HENA @ EIC

- True 4π -coverage
 - Fully integrated detector-IR
- Detector

INFN

empowering the existing complex

NFW S. Dalla Torre

The EIC Detector

(general considerations)

Detector requirements dictated by the Physics Scope

binning: x, Q^2 , t, Θ

10 - 100 fb⁻¹

1 fb⁻¹

Ldt:

ATHENA @ EIC

10 fb⁻¹

7

The evolution of the detector concept

- White paper (2012, 2014)
- followed by the initial concepts

The Call for Detector proposals (2021)

> ATHENA

- ✓ A Totally Hermetic Electron-Nucleus Apparatus
- Concept: General purpose detector inspired by the YR studies based on a new central magnet of up to 3T

> CORE

- ✓ COmpact detectoR for the Eic
- Concept: Nearly hermetic, general purpose compact detector, 2T baseline

> ECCE

- EIC Comprehensive Chromodynamics Experiment
- Concept: General purpose detector based on 1.5T BaBar magnet

La Biodola, 22-28 May 2022

- The Yellow Report reference detector (2020)
 - A global effort of the EIC-User Group

- 2022: Merging of ECCE and ATHENA proposal strengths forming a new collaboration for DETECTOR 1
 - Ongoing process!

INFN

ATHENA

The evolution of the detector concept

- White paper (2012, 2014)
- followed by the initial concepts

The Call for Detector proposals (2021)

ATHENA

- ✓ A Totally Hermetic Electron-Nucleus Apparatus
- Concept: General purpose detector inspired by the YR studies based on a new central magnet of up to 3T

> CORE

- ✓ COmpact detectoR for the Eic
- Concept: Nearly hermetic, general purpose compact detector, 2T baseline

> ECCE

- EIC Comprehensive Chromodynamics Experiment
- Concept: General purpose detector based on 1.5T BaBar magnet

La Biodola, 22-28 May 2022

- The Yellow Report reference detector (2020)
 - A global effort of the EIC-User Group

- 2022: Merging of ECCE and ATHENA proposal strengths forming a new collaboration for DETECTOR 1
 - Ongoing process!

9

ATHENA

The ATHENA Detector

(by highlights)

Central Detector Overview

Highlights of the ATHENA design

- Large-bore 3T solenoid, material budget in nuclear interaction length ~1.3 λ/λ_I
- Hybrid tracking: Silicon pixel sensors by MAPS and state-of-the-art MPGDs
- Calorimetry: Backward highresolution crystal calorimeter / Barrel novel hybrid imaging/ sampling EM calorimeter / Forward high-energy jet reconstruction
- PID: Large bore allows for layered, complementary, state-of-the-art PID technologies and innovative approach for single photon detection

ATHENA – Material Budget in Central Detector

Material budget in front of ECals

ATHENA (a) EIC

S. Dalla Torre

ATHENA VERTEX & TRACKING, a description Si Trackers (from eRD16/eRD18/eRD25 → eRD111) **1 single technology** *Optimized* <u>65-nm technology MAPS (10 μm pitch, < 20 mW cm⁻²)</u> **Developed for ALICE ITS3** non-symmetric EIC Si consortium (leadership within ATHENA) configuration About MAPS IN ATHEWA All details in the poster by • Silicon Vertex, 3 layers first layer @ R = 33 mm material: 0.05 X/X₀ / layer Giacomo Contin • Silicon barrel, 2 layers material: 0.55 X/X₀ / layer • F & B Silicon disks About MPGD in ATHENA material: 0.24 X/X₀ / layer All details in the poster by **MPGDs** (from eRD3/eRD6 \rightarrow eRD108) Additional space-point information (not material < $1\% X/X_0$ / layer Matt Posik included in present tracking studies) R&D needed for 2-D read-out **bTOF** layer in front of Micromegas Imaging bECal, coordinate**barrel**, cylindrical, 2 x 2 layers, Micromegas measurement behind DIRC rings, GEM nECal high-granularity in the central behind dRICH, µRWELL region, behind pfRICH • INFN

KEY INGREDIENTS for these PERFORMANCES

• High magnetic field / Maximized lever-arm/ Minimized material /Sensor pitch

INFN

ATHENA Calorimetry, overview

Global characteristics of ATHENA Calorimetry:

 \succ high granularity

high resolution

ATHENA @ EIC

 \succ Si PM sensors \rightarrow fine time information

nECAL

 \blacktriangleright Finest resolution needed \rightarrow PbWO4 crystals in the central part

- ➢ eRD1→eRD105,eRD110 & EEEMCAL consortium
- **pECal & pHCAL**, compensated calorimeters
 - > A global development, eRD1 \rightarrow eRD107, eRD110
 - ➤ W/SciFi, Fe/Scint
 - > Measurements of longitudinal shower development

bHCal and nHCal

- Both Fe/Scint sandwich
- > Well established technology, no R&D needed
- > bHCal as tail catcher following bECal (~ 1 λ_1) and solenoid (~1.3 λ_1): 95 % of hadrons contained

ATHENA

PID in ATHENA detector

La Biodola, 22-28 May 2022

PID momentum acceptance

FAR FORWARD instrumentation $\eta > 4.0$.

		F	Ft	ack	er	S			
0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0	*				etector B0 R0 R0 R0 R0 B0 B0 B0 R0 R0 OM	r Resol Detect Detect man Por MD, XL ~ + bear Detect man Por MD, XL~	ution On or, p = 1 or, p = 4 ts, p = 2 ts, p = 1 o.5 or, p = 1 or, p = 4 ts, p = 2 ts, p = 2 ts, p = 1 0.5	ly: 00 GeV/c 1 GeV/c 275 GeV/ 00 GeV/c 1 GeV/c 1 GeV/c 75 GeV/ 00 GeV/	2
			PT	- (GeV	/c)		Ful	lSir	n
	-								

		•			
Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology	
P0 tracker	5.5.20.0	NI/A	Charged particles	MAPS	
bu tracker	5.5-20.0	N/A	Tagged photons	AC-LGAD	
Off-Momentum	0.0-5.0	45%-65%	Charged particles	AC-LGAD	
Poman Pots	0.0.5.0	60% 05%*	Protons	AC-LGAD	
Roman Pots	0.0-5.0	0070-9370	Light nuclei		
Zaro Dograo Calorimator	0.0.4.0	NI/A	Neutrons	W/SciFi (ECal)	
Zero-Degree Calorimeter	0.0-4.0	N/A	Photons	Pb/Sci (HCal)	

INFN

NA

FAR BACKWARD

- measure IP6 luminosity with an absolute precision better than 1% absolute and a relative precision better than **0.01%** using the electron-ion bremsstrahlung by three largely independent and complementary measurements
- electron detectors will also be used to tag low- Q^2 Events (photoproduction) in ATHENA

10-

stuno 10⁻²

Normalized o

10-4

FullSim

- Spaghetti W-calorimeter with radiationhard scintillating fiber, read out with fast **PMTs**
- Cherenkov-radiating quartz fibers read out by SiPMs

ATHENA **PERFORMACE** for **PHYSICS**

(selected items)

ACCEPTANCE AND PERFORMANCE for DIS

DIS resolution in the (x, Q²) plane

- reconstruction via e only for NC, y not too small – key: ECal performance
- Reconstruction with support of hadrons (small y) - key: good reconstruction of the whole h final state
- For large QED radiation correction regions and CC, h detection only – key: good reconstruction of the whole h final state

DIS reach in (x, Q²) plane

ep SCATTERING, 100 fb⁻¹ (=1 y of data taking)

- $[Q^2 > 1, 0.01 < y < 0.95]$
- grid of points: simulated unpolarized measurements
- negligible statistical error
- 1.5-2.5% systematic error point to point

inclusive NC cross section:

the fundamental ingredient for measurement of:

- collinear parton densities
- semi-inclusive, exclusive and hadronic final state cross section

Electron Identification

Sample purity respect to main background source, i.e. pions

Included in this study:

- NC DIS events from PYTHIA6
- ECal performance
- Kinematic cuts: Isolation of the scattered electron
 - $\mathbf{e}-\boldsymbol{\Sigma}$ check

Not included:

 Contribution to e/π separation from PID devices

Lepton-pair invariant-mass resolution

Resolution demonstrated in the plot

- only a small low-mass shoulder from bremsstrahlung is observed
- possibility for correction with more advanced analysis (key is bECal)

Key for excellent resolution: low-mass tracking (including beam pipe)

Jet reconstruction

Jets reconstructed with anti- k_{τ} algorithm, R = 1.0, with energy-flow reconstruction

jet azimuthal angle absolute resolution relative jet energy resolution Jet energy resolution better 30 than 10% for $E_{iet} > 40 \text{ GeV}$ sigma from fit $-2.5 < \eta_{iet} < 0.0$ $-2.5 < \eta_{iot} < 0.0$ sigma from fit $0.0 < \eta_{iet} < 1.0$ mean from fit mean from fit $0.0 < \eta_{iet} < 1.0$ 25 Jet azimuthal angle resolution $1.0 < \eta_{iet} < 2.5$ $1.0 < \eta_{iet} < 2.5$ 20 $2.5 < \eta_{iet} < 3.5$ $2.5 < \eta_{iet} < 3.5$ better than 1 degree for E_{iet} > 25 15 sigma Δφ_{jet} (degree) ∆Ejet/Ejet (%) 10 sigma Low E_{iet} affected by threshold • Very high E_{iet} affected by mean mean acceptance -10 -2 -15, 150 200 25 50 75 100 125 150 175 200 50 100 0

Jet Energy (GeV)

KEY - tracking and calorimetry resolution

GeV

FastSim

Jet Energy (GeV)

Charm reconstruction, secondary vertices

for secondary decays, for example, D⁰ reconstruction Longitudinal and transversal Single particle, resolution Vertex resolution (µm) **Key -** resolution and low mass Distance of Closest Approach (µm) vs track number vertexing layers Single particle events, DCAre resolution in µm 10^{3} x (w/ tracks $\ln l < 3.5$) y (w/ tracks $\ln l < 3.5$) solution (µm z (w/ tracks |n| < 1.0) 10^{2} displaced-track resolutions \rightarrow ٠ 도 0 Secondary decay reconstruction (D⁰, ...) good charm-jet tagging based on a 10 displaced track counting charm efficiency 10% - 30% for 5-30 GeV/c, 5 10 15 excellent purity (misidentification < 1%) 10^{-1} 20 10 p (GeV/c) Track Multiplicity

La Biodola, 22-28 May 2022

29

SUMMARY and PERSPECTIVES

- We have reported about the ATHENA effort
 As underlined, more efforts in parallel
- Review of EIC detector proposals concluded in March 2022

- 2nd experiment (DETECTOR 2) planned on a different timescale
 CORE proposal a starting point
- Preparation of pre-TDR / TDR in front of us

A very exciting time is ahead of us to explore the structure and dynamics of matter at a new ep/eA collider facility, following years of preparation!

■ Great opportunities for physics and frontier detectors → Join us!