

The 100µPET project:

an ultra high resolution small-animal PET scanner

15th Pisa meeting on Advanced Detectors 22 – 28 May 2022 Mateus Vicente on behalf of the 100µPET collaboration

Introduction

UNIVERSITÉ

enzo Paolozzi

aboratory test

2

Swiss National ppe lac Science Foundation

_mvicente@cern.ch

Silicon pixel detectors at UNIGE

Long tradition at UNIGE with hybrid silicon detectors:

2016

200ps

- pixel detectors for ATLAS IBL and ITk upgrade; strips (ATLAS SCT, AMS, DAMPE)
- In 2015: kick-off R&D on monolithic pixel sensors in SiGe BiCMOS technology
 - Aiming at MAPS with timing resolution below 100ps (for MIPS)
 - **MONOLITH** project, see poster on Solid State Detectors session

talk by Magdalena Munker ("Trento" Workshop 2022)

FASER pre-shower detector, see poster on FE, Trigger, DAQ and Data Management session talk by Lorenzo Paolozzi ("Trento" Workshop 2022)

innovat for high performa microele

Didier Ferrere · System integr Laboratory tes

Mateus Vicen System integr

Laboratory tes

Jihad Saidi

 System simula Laboratory test

- Sensor design Analog electro

Pierpaolo Val Lead chip des Digital electro

Breakfast and S

Monolithic prototype ASICs for timing purposes 2021 2019 2018 2017 PicoAD p0 ATTRACT noGAIN 50ps 36ps 20ps 110ps Hexagonal pixels 65µm 1 and 0.5 mm² pixels Hexagonal pixels 65µm side 30 pixels 500x500µm² Same pixel/Electronics of and 130um side · Discriminator output 100ps TDC +I/O logic 30ps TDC +I/O logic ATTRACT Discriminator output Analog channels

Didier Ferrere

Positron Emission Tomography (PET)

- PET is a nuclear medicine method to study metable
 - Radiotracer is injected in a body; Positrons from the Todiace dis uttitie fright resolution the todiace discussion and detected in coincidence. Two back-to-back 511 KeV photons are emitted and detected in coincidence. Dy EXPIOILING much improved spatial, DOI and time resolutions Lines-of-Response (LoR) are defined by the volume between the sensitive elements detecting the two photons

Swiss Natiginal ppe lace Science Foundation

mvicente@cern.ch

Positron Emission Tomography (PET)

- To access ultra-high resolution molecular imaging \rightarrow Reduce the LoR volumes by exploiting:
 - Better timing resolution for coincidence measurement; Improved depth-of-interaction measurement;
 - $\square Improved spatial resolution with higher detection volume granularity \rightarrow HEP based silicon pixel detectors$
 - The higher 100UPET aroundarity will reduce the noise-like combinatorics artifacts during projection of LoRs

System simulation
 Laboratory test

Mateus Vicen

System integr

The Thin Time-of-Flight (TT-PET) project

The 100µPET predecessor – from 2016-19

UNIVERSITÉ

DE GENÈVE

Swiss Nationalppe lace Science Foundation

The Thin Time-of-Flight (TT-PET) project

The 100µPET predecessor – from 2016-19

- Performance fully simulated
- E. Ripiccini et al., arXiv:1811.12381
- Imaging reconstruction produced
- D Havakawa PhD thesis link

9a

TT-PET Image Reconstruction

Iterative Reconstruction 1.2 mm 1.0 mm 2.0 mm 0.9 mm 0.5 mm 0.7 mm

Silicon pixel area [µm²] 500×500 n **Point-spread function** MLEM computation method Z position [mm] 0 X position [mm] 0 5 10 15 0 0.57 0.56 Radial 0.59 0.52 0.65 0.61 FWHM 0.60 0.60 0.67 0.71 0.64 0.65 Tangential [mm] n Axial 0.50 0.49 0.50 0.51 0.45 0.45

 System simula Laboratory test

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Swiss National ppe lac **Science Foundation**

_mvicente@cern.ch

Didier Ferrere

- · System integr
 - Laboratory tes

12.5

10

0.60

0.65

0.45

5

Lorenzo Paol

15

0.56

0.70

0.45

desigr electro

b Val

p des

lectro

t and S

I Breakfast and Science Seminar

28/09/2021

The Thin Time-of-Flight (TT-PET) project

Is it the time for a change of paradi

- Performance fully simulated
- E. Ripiccini et al., arXiv:1811.12381
- Imaging reconstruction produced
- D. Hayakawa PhD thesis, link

9c

<u>Point Spread Function</u> (iterative <u>MLEM</u> method) = 0.18 mm^3

The 100µPET predeces

<u>Change of paradigm in PET imaging is possible with</u> <u>monolithic pixel detectors</u>

- Can we do better? Must reduce even further the "LoR volume"
 - Either by pushing the timing resolution to << 30 ps</p>
 - or by having better spatial resolution

* Filtered Back Projection imaging reconstruction method

9d

The 100µPET scanner

10

mvicente@cern.ch

Mateus Vicen
System integr

Laboratory tes

Ferrere

em integr pratory tes

Jihad Saidi

UNIVERSITÉ

New SINERGIA project evolving from the TT-PET I Swiss National ppe lack Science Foundation

- **Simplified** and **improved** scanner design, <u>avoiding acceptance inefficiency</u> from cooling blocks
 - <u>Monolithic</u> 100μPET detector ASIC: 2.5 x 3 cm² active pixel matrix; 100 μm pixel pitch; 250 μm thick active silicon sensor
 - Single silicon detection layer composed by 2x2 chips assembled, covering 30 cm²
 - 4 "towers" compose the scanner. 60 detection layers on each tower = 960 chips!
 - Large number of services and interconnections, requiring innovative design. <u>Two possible designs</u> under study
 - 5 silicon detector layers (20 chips) stacked on a PCB, staggered for wire-bonding. 12 modules are stacked in a tower
 - 1 detection layer (2x2 chips) are interfaced to a FPC via <u>ACF bonding</u>. 60 FPC/ASIC layers are stacked in a tower

100µPET scanner sensitivity and resolution

Simulation – Full scanner and e⁺e⁻ annihilation

Monte Carlo simulations has shown a disruptive jump in the scanner's resolution and sensitivity

Efficiency can be increased with absorber layers

13a

It is a compromise between efficiency and resolution

Pierpaolo Val
 Lead chip des
 Digital electro

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Swiss Natiginal ppe lace Science Foundation

mvicente@cern.ch

G. lacobucci - CIBM Breakfast and S

100µPET scanner sensitivity and resolution

Simulation – Full scanner and e⁺e⁻ annihilation

Monte Carlo simulations has shown a disruptive jump in the scanner's resolution and sensitivity

Efficiency can be increased with absorber layers

13b

It is a compromise between efficiency and resolution

Swiss National ppe lace Science Foundation

mvicente@cern.ch

Mateus Vicen
System integr

Laboratory tes

Detector ASIC prototyping

- Hexagonal 65 µm wide pixel (equivalent to ~100µm XY pitch) for R&D investigation
- Tested at CERN SPS H8 beam-line in Q2 2021

14

- >99.5% detection efficiency (on both prototypes)
- Timing resolution of **36 ps** * (without gain) and **20 ps** ** (with gain layer, preliminary) п. *G. lacobucci et al 2022 JINST 17 P02019 (no gain prototype)

**First PicoAD prototype. Sensor and front-end design still to be optimized + ps TDC

UNIVERSITÉ **DE GENÈVE**

FACULTÉ DES SCIENCES

Swiss Natiginal ppe lac Science Foundation

mvicente@cern.ch

Mateus Vicen

System integr

Jihad Saidi

Didier Ferrere System

Laboratory tes

simula Laboratory tes

integr

Laboratory tes

15

- **PET scanners** are an important diagnostic tool that has been improving in an astounding way over the y and will continue to improve
- Monolithic pixelated silicon sensors have the potential to enable <u>ultra-high-resolution molecular imagination</u>
- The 100µPET SNSF SINERGIA project will deliver a small-animal scanner based on silicon technology wi expected 0.04 mm3 volumetric spatial resolution, one order of magnitude improvement
 - In the whish-list: add TOF \lesssim 10ps, when delivered by the MONOLITH project
- Innovative ASIC design and module construction techniques are being developed
 - Silicon-sensor technology will continue to improve and its cost will go down
 - In the future, scanners larger than those for small-animals could be envisaaed

Didier Ferrere

- · System integr Laboratory tes
- - Lorenzo Paol Sensor design Analog electro

Pierpaolo Val Lead chip des Digital electro

G. lacobucci - CIBM Breakfast and S

 System simula Laboratory test

Mateus Vicen System integr Laboratory tes

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

mvicente@cern.ch

Swiss Natiginal ppe lac Science Foundation