

The trigger system for the MEG II experiment

Marco Francesconi for MEG II collaboration 15th Pisa Meeting on Advanced Detectors, La Biodola, 23-27 May 2022

CLFV Golden channel: $\mu^+ \rightarrow e^+ \gamma$

Physics motivation:

Charged Lepton Flavour Violation are key processes in SM:

lepton interactions can only couple within the same family

But neutrino oscillations shows that Lepton family are violated

Marco Francesconi

CLFV Golden channel: $\mu^+ \rightarrow e^+ \gamma$

Physics motivation:

Charged Lepton Flavour Violation are key processes in SM:

lepton interactions can only couple within the same family

But neutrino oscillations shows that Lepton family are violated

Marco Francesconi

World best upper $BR(\mu^+ \to e^+ + \gamma) \le 4.2 \cdot 10^{-13} \ (@ 90 \% \ C.L.)$ limit by **MEG I**: The European Physical Journal C 76.8 (2016): 434

One order of magnitude improvement!

MEG II experimental sensitivity:

 $BR(\mu^+ \to e^+ + \gamma) \le 6 \cdot 10^{-14} \ (@ 90\% C.L.)$ Symmetry 13.9 (2021): 1591

Final statistic to be collected in **3 years**: $\sim 10^{16} \mu^+$ decays Use world **most intense** continuous muon beam: $7 \cdot 10^7 \,\mu^+/s$ at PSI (CH)

CLFV Golden channel: $\mu^+ \rightarrow e^+ \gamma$

Physics motivation:

Charged Lepton Flavour Violation are key processes in SM:

lepton interactions can only couple within the same family

But neutrino oscillations shows that Lepton family are violated

Marco Francesconi

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment \bullet
 - \rightarrow exploit the simple 2-body decay kinematics **but** harsh pileup environment from other muons

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment \bullet \rightarrow exploit the simple 2-body decay kinematics **but** harsh pileup environment from other muons
- **Liquid Xenon detector** (scintillation calorimeter)
 - \rightarrow reconstruct gamma variables **but** limited angular coverage (~ 11% of solid angle)

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment \bullet
 - \rightarrow exploit the simple 2-body decay kinematics **but** harsh pileup environment from other muons

- **Liquid Xenon detector** (scintillation calorimeter)
 - \rightarrow reconstruct gamma variables **but** limited angular coverage (~ 11% of solid angle)
- Magnetic Spectrometer (drift chamber + plastic scintillator)
 - \rightarrow detect the positron **but** non-uniform magnetic field selects E>45 MeV positron

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment
 - \rightarrow exploit the simple 2-body decay kinematics **but** harsh pileup environment from other muons

- **Liquid Xenon detector** (scintillation calorimeter)
 - \rightarrow reconstruct gamma variables **but** limited angular coverage (~ 11% of solid angle)
- Magnetic Spectrometer (drift chamber + plastic scintillator)
 - \rightarrow detect the positron **but** non-uniform magnetic field selects E>45 MeV positron

Detectors must provide high resolution **charge** and **time** reconstruction despite the extreme occupancy

All signals sampled at >=1.4 GHz

Full waveform stored for **offline processing**

- Noise rejection
- Pileup identification and subtraction
- Feature extraction
- Hit clustering
- ullet. . .

3 / 15

High speed digitization: the WaveDAQ system

Full MEG II experiment needs ~9000 channels: commercial FADCs too slow or too costly \rightarrow DRS4 ASIC Chip

Analog switched capacitor array: analog memory with depth of 1024 sampling cells Developed at PSI, provides a "**snapshot**" of signal before trigger time

Extensively used also in MEGI 800 MSPS \leftrightarrow 5 GSPS sampling speed ᠵᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ᠆ᢁ IN Clock O-Shift Register

Strong constrain on trigger system:

decision must happen before 1024 samples are collected

 $T^{Max} = 1024/f_{sampl}$

Trigger latency < 731ns @1.4 GHz

Marco Francesconi

4 / 15

High speed digitization: the WaveDAQ system

Analog switched capacitor array: analog memory with depth of 1024 sampling cells Developed at PSI, provides a "**snapshot**" of signal before trigger time

Extensively used also in MEGI 800 MSPS \leftrightarrow 5 GSPS sampling speed IN Clock O-Shift Register

Strong constrain on trigger system:

decision must happen before 1024 samples are collected

 $T^{Max} = 1024/f_{sampl}$

Trigger latency < 731ns @1.4 GHz

Marco Francesconi

Full MEG II experiment needs ~9000 channels: commercial FADCs too slow or too costly \rightarrow DRS4 ASIC Chip

WaveDREAM board:

16 ch **D**rs4 **REA**dout **M**odule (10cm x 16 cm) Waveform digitizer with two **DRS4** each with 80 MHz ADC for readout

Includes <u>SiPM</u> bias and amplification for Liquid Xenon detector and Timing Counter.

More details: Poster #6 "Design of the WaveDAQ System" by S. Ritt

How to reduce the event rate?

MEG event size is **3 MB** after **compression and data reduction** At 20 Hz is ~500 TB every 3 month!

How to reduce the event rate?

MEG event size is **3 MB** after **compression and data reduction** At 20 Hz is ~500 TB every 3 month!

Physics observables:

- Photon Energy $E_{
 m v}$
- Positron Momentum $P_{\rm e}$
- Relative angle $\Theta_{e\gamma}$
- Time coincidence $T_{e\gamma}$

Require CDCH: Cannot be fully exploited by trigger

How to reduce the event rate?

MEG event size is **3 MB** after **compression and data reduction** At 20 Hz is ~500 TB every 3 month!

Physics observables:

- Photon Energy E_{γ}
- Positron Momentum $P_{\rm e}$
- Relative angle $\Theta_{e\gamma}$
- Time coincidence $T_{e\gamma}$

Require CDCH: Cannot be fully exploited by trigger

Trigger-level requests:

- Estimate E_{γ} through signals from Liquid Xenon photon detectors → QSUM trigger
- Estimate $T_{e\gamma}$ by comparing hit time in Timing Counter and in Liquid Xenon → **Time trigger**
- Combines Θ_{ev} and P_e by checking if the pair of hits is compatible with signal topology \rightarrow **DirectionMatch trigger**

5 / 15

Each WaveDREAM board contains a dedicated **ADC** and **Discriminator** for all input signals

ADC conversion takes ~100 ns

Flexibility to implement **charge** or **time** based selection within the onboard FPGA or on the global experiment

Marco Francesconi

WaveDAQ trigger inputs

WaveDAQ trigger subsystem

Marco Francesconi

WaveDAQ trigger subsystem

Marco Francesconi

QSUM trigger: design

QSUM trigger computes the **weighted sum** of pedestal-subtracted signal amplitude

- Gain
- Detection efficiency
- Detector type (SiPM-PMT)
- Ageing speed
- •

Marco Francesconi

This selection have to account for **ADC conversion time** \rightarrow slowest path of trigger selection \rightarrow use amplitude: cannot afford to integrate signal charge

Pedestal estimated "on the fly" from previous samples to subtract low frequency noise

QSUM trigger: design

QSUM trigger computes the **weighted sum** of pedestal-subtracted signal amplitude

- Detector type (SiPM-PMT)
- Ageing speed
-

Use of **DSP48 primitives** of Xilinx FPGAs to compute difference, product and for the summation speedup

This selection have to account for **ADC conversion time**

→ slowest path of trigger selection

→ use amplitude: cannot afford to integrate signal charge

Pedestal estimated "on the fly" from previous samples to subtract low frequency noise

QSUM trigger: performance

Two main calibration sources for Liquid Xenon detector

C-W proton accelerator Energy calibration lines :

Marco Francesconi

Pisa Meeting on advanced detector, 27-05-2022

9/15

QSUM trigger addendum: Q/A selection

Well-known property of Noble Gas scintillators: Emission time of photons depends on energy deposit mechanism

 $Xe + energy \rightarrow Xe^*$

 $Xe^* + Xe \rightarrow Xe_2^* \rightarrow 2 Xe + photon$

QSUM trigger addendum: Q/A selection

z (cm)

further selection offline with template fitting

DirectionMatch trigger: design

Single sensor in Liquid Xenon detector is sensitive to shower fluctuations ($R_{Molière}^{LXe} = 5.2 \text{ cm}$)

Marco Francesconi

Online track fitting is not feasible: rely only on Liquid Xenon - Timing Counter channel correlation

DirectionMatch trigger: design

Single sensor in Liquid Xenon detector is sensitive to shower fluctuations ($R_{Molière}^{LXe} = 5.2 \text{ cm}$)

Marco Francesconi

Online track fitting is not feasible: rely only on Liquid Xenon - Timing Counter channel correlation

Lesson learn: Exploit your detector strengths!

DirectionMatch trigger: performance

Strategy: check bias induced using dedicated reduced bias trigger

Num	Trigger	Enabled	Prescaling	Rate		
0	MEG		2	16.308645		Physics trigger
1	MEG low Q		86	80.847122		
2	MEG wide Angle		60	60.56076		
3	MEG wide Time		31	28.639572		"Reduced bia
						L

DirectionMatch Trigger

Marco Francesconi

Operated for the first time in MEG II during 2021 beam time: Availability of all electronics channel was crucia to explore the whole solid angle

Time trigger: design

Modern FPGA input tiles have integrated shift registers: **Oversampling** of input signals

> Can get signal timing timing at 1/n of the clock cycles resolution (n=8)

Minimal logic and latency need:

encoder at output to identify transitions

Resolution @80 MHz: 12.5; ns/8 ~ 1.56 ns Single channel $\sigma = \frac{1.56 \text{ ns}}{\sqrt{12}} \sim 450 \text{ ps}$

Time trigger: design

Modern FPGA input tiles have integrated shift registers: **Oversampling** of input signals

> Can get signal timing timing at 1/n of the clock cycles resolution (n=8)

Minimal logic and latency need:

encoder at output to identify transitions

Marco Francesconi

13 / 15

Time trigger: performance

Extract trigger effect from ratio of two distribution

Detector time resolution (<100ps) much better than trigger one: only relevant effect is trigger **TIME efficiency** ~3ns coincidence resolution efficiency 0.8 0.6 0.4 0.2 **Preliminary** ____XIU -20 40 -40 20 -60 0 coincidence time (s)

Time trigger: performance

Source of bias observed in depth dependence of time reconstruction:

Time walk on discriminator because of slow MPPC risetime (0.1 mV/ns)

Marco Francesconi

Extract trigger effect from ratio of two distribution

14 / 15

Conclusions and prospects

MEG II ended its first **Physics run** in 2021. Data sanity check: radiative decays observed!

Counts/(50 ps) 2000 2000 2000 قىلىدارىيەلىمىدىكىرى قىلىدى The WaveDAQ system was successfully deployed (x8 more channels than 2020) and the DAQ side performed extremely 1500 well. $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu} \gamma$ 1000 **Preliminary** 500 MEG II trigger system performed very smoothly for the first time with all electronics. 3 t_{ev} at target [ns] Refinements planned for 2022, especially on the timing of the Liquid Xenon signals.

WaveDAQ application to other experiments: poster #49 \rightarrow "The fragmentation trigger of the FOOT experiment" poster #257 → "Looking for Cherenkov light in liquid Xenon with LoLX"

Marco Francesconi

Definitely a major step toward the $\mu \rightarrow e\gamma$ physics data taking next years

Backup

Dipole and 4-lepton operator

Model	$\mu \rightarrow eee$	$\mu N \rightarrow eN$	$\frac{\mathrm{BR}(\mu \rightarrow eee)}{\mathrm{BR}(\mu \rightarrow e\gamma)}$
MSSM	Loop	Loop	$pprox 6 imes 10^{-3}$
Type-I seesaw	Loop^*	Loop^*	$3\times 10^{-3}-0.3$
Type-II seesaw	Tree	Loop	$(0.1 - 3) imes 10^3$
Type-III seesaw	Tree	Tree	$pprox 10^3$
LFV Higgs	$\operatorname{Loop}^\dagger$	$\mathrm{Loop}^{*\dagger}$	$pprox 10^{-2}$
Composite Higgs	Loop^*	Loop^*	0.05 - 0.5

Marco Francesconi

Additional EM vertex needed to convert an operator to the other

Huge theoretical effort on combining results from various processes

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_{\alpha} C_{\alpha}^{(5)} O_{\alpha}^{(5)} + \frac{1}{\Lambda^2} \sum_{\alpha} C_{\alpha}^{(6)} O_{\alpha}^{(6)} + O_{\alpha}^{(i)} = \text{operator of i-th order in SM field}$$

 $C_{\alpha}^{(i)} = \text{coupling associated to operator } O_{\alpha}^{(i)}$

 Λ = scale of physics being integrated

 $\frac{{\rm CR}(\mu N \! \rightarrow \! eN)}{{\rm BR}(\mu \! \rightarrow \! e\gamma)}$ $10^{-3} - 10^{-2}$ 0.1 - 10 $O(10^{-2})$ $\mathcal{O}(10^3)$ $\mathcal{O}(0.1)$ 2 - 20

17 / 15

MEG experiment: signature and backgrounds

Marco Francesconi

18 / 15

MEGI-MEGII comparison

Marco Francesconi

Liquid Xenon **Drift Chamber Timing Counter**

Design performances

	MEG I	MEGII
$E_{\rm e^+}~({\rm keV})$	380	130
$\theta_{\mathrm{e}^+} \; (\mathrm{mrad})$	9.4	5.3
$\phi_{\mathrm{e}^+} \ \mathrm{(mrad)}$	8.7	3.7
$E_{\gamma} w_{\gamma} > 2; \operatorname{cm}(\%)$	1.7	1.1
$E_{\gamma} w_{\gamma} < 2; \operatorname{cm}(\%)$	2.4	1.0
$u_{\gamma} \ (\mathrm{mm})$	5	2.6
$v_{\gamma} \ (\mathrm{mm})$	5	2.2
$t_{\mathrm{e}^{+}\gamma} \; \mathrm{(ps)}$	122	84

Photon detector: the Liquid Xenon detector

Marco Frances

4092 UV SiPMs 12mmx12mm

optimised positions of the remaining 668 PMTs

by A. Matsushita

The Cylindrical Drift Chamber

Marco Francesconi

Single volume stereo drift chamber with He: Isobutane

"Analysis and study of the problems on the wires used in the MEG CDCH and the construction of the

	MEG	MEG II
Efficiency	29%	65%
Theta	9.4 mrad	6.7 mrad
Momentum	306 keV/c	100 keV/c

The pixelated Timing Counter

Final detector fully tested with **full beam intensity** $(7 \ 10^7 \,\mu/s)$:

- 256 scintillating "Tiles" per module
- Multiple hits belonging to the same **positron track**
- Tracking capability to seed CDCH tracks
- Auxiliary Laser for stability monitoring

	MEG	MEG II
Timing	62 ns	30 ns

More details: Poster #184 "Operational results with the pixelated timing Counter (pTC) of the MEGII experiment during the first year of physics data taking" by P.W. Cattaneo

Pisa Meeting on advanced detector, 27-05-2022

22 / 15

WaveDREAM detail

Marco Francesconi

23 / 15

Serial links

- - Delay to sample "value" stable moment
- Bitslip to align characters whitin each word
- Automatic slot by slot calibration needed \rightarrow Finite State Machine

8 bit word sent each clock period: 640 Mbps with 3 clk cycles latency Backplane track length different for each slot

24 / 15

Signal enters

Constraint on additional baseline for offline analysis

Final WaveDREAMs have a **quicker ADC**: Still 80 MHz speed but smaller latency Trigger latency improved by ~120 ns Current algorithms run in 560 ns 1.8 GHz sampling speeds possible

Trigger latency

Multithreaded DAQ system

- High parallelization
- Use new c++ thread interface
- Provides key-value storage of board parameters \bullet
- \bullet
- lacksquare
- Flexibility to face system scaling: \bullet

26 / 15

The challenge of datasize and dead time

Main drawbacks of high speed digitizers approach:

Marco Francesconi

DRS4 does not convert data in real time Takes 375 µs to download the samples after a trigger is generated Continuous beam: dead time = event loss Necessary to limit the DAQ rate

> Goal 24 Hz Trigger rate: Live time fraction is 99%

Data taking perspectives, depending on annealing

28 / 15

