CLFV Golden channel: $\mu^+ \rightarrow e^+ \gamma$

Physics motivation:

Charged Lepton Flavour Violation are key processes in SM:
lepton interactions can only couple within the same family

\[
\begin{align*}
\bar{\nu}_e & \leftrightarrow e^\pm \\
\bar{\nu}_\mu & \leftrightarrow \mu^\pm \\
\bar{\nu}_\tau & \leftrightarrow \tau^\pm
\end{align*}
\]

But neutrino oscillations shows that **Lepton family are violated**
CLFV Golden channel: $\mu^+ \rightarrow e^+ \gamma$

Physics motivation:

Charged Lepton Flavour Violation are **key processes in SM:** lepton interactions can only couple within the same family

$\bar{\nu}_e \leftrightarrow e^\pm$

$\bar{\nu}_\mu \leftrightarrow \mu^\pm$

$\bar{\nu}_\tau \leftrightarrow \tau^\pm$

But neutrino oscillations shows that **Lepton family are violated**

But neutrino oscillations shows that **Lepton family are violated**

World best upper limit by MEG I:

$\text{BR}(\mu^+ \rightarrow e^+ + \gamma) \leq 4.2 \cdot 10^{-13} \ (\@ 90\% \ C.L.)$

The European Physical Journal C 76.8 (2016): 434

MEG II experimental sensitivity:

$\text{BR}(\mu^+ \rightarrow e^+ + \gamma) \leq 6 \cdot 10^{-14} \ (\@ 90\% \ C.L.)$

Symmetry 13.9 (2021): 1591

One order of magnitude improvement!

Final statistic to be collected in 3 years: $\sim 10^{16} \mu^+$ decays

Use world **most intense** continuous muon beam: $7 \cdot 10^7 \mu^+/s$ at PSI (CH)
Physics motivation:

Charged Lepton Flavour Violation are key processes in SM:
lepton interactions can only couple within the same family

\[\bar{\nu}_e \leftrightarrow e^{\pm} \]
\[\bar{\nu}_\mu \leftrightarrow \mu^{\pm} \]
\[\bar{\nu}_\tau \leftrightarrow \tau^{\pm} \]

But neutrino oscillations shows that Lepton family are violated

World best upper limit by MEG I:

\[BR(\mu^+ \rightarrow e^+ + \gamma) \leq 4.2 \cdot 10^{-13} \] (@ 90% C.L.)

The European Physical Journal C 76.8 (2016): 434

MEG II experimental sensitivity:

\[BR(\mu^+ \rightarrow e^+ + \gamma) \leq 6 \cdot 10^{-14} \] (@ 90% C.L.)

Symmetry 13.9 (2021): 1591

One order of magnitude improvement!

Final statistic to be collected in 3 years: \(\sim 10^{16} \) \(\mu^+ \) decays

Use world most intense continuous muon beam: \(7 \cdot 10^7 \mu^+ / s \) at PSI (CH)

Signal

Physics Background:

Accidental Background:

\[\alpha R_\mu BR(\mu \rightarrow e\nu\bar{\nu}\gamma) \]
\[\alpha R^2_\mu \Delta T \]

Photon from: Radiative, AIF, Bremsstrahlung
Design of MEG II Experiment

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- Stop muon at center of experiment
 - exploit the simple 2-body decay kinematics
 - but harsh pileup environment from other muons
Design of MEG II Experiment

Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment
 -> exploit the simple 2-body decay kinematics
 but harsh pileup environment from other muons

- **Liquid Xenon detector** (scintillation calorimeter)
 -> reconstruct gamma variables
 but limited angular coverage (~ 11% of solid angle)
Design of MEG II Experiment

Experiment tailored to $\mu^+ \to e^+ \gamma$ search

- **Stop muon** at center of experiment
 - exploit the simple 2-body decay kinematics
 - but harsh pileup environment from other muons

- **Liquid Xenon detector** (scintillation calorimeter)
 - reconstruct gamma variables
 - but limited angular coverage (~11% of solid angle)

- **Magnetic Spectrometer** (drift chamber + plastic scintillator)
 - detect the positron
 - but non-uniform magnetic field selects $E>45$ MeV positron
Experiment tailored to $\mu^+ \rightarrow e^+ \gamma$ search

- **Stop muon** at center of experiment
 → exploit the simple 2-body decay kinematics
 but harsh pileup environment from other muons

- **Liquid Xenon detector** (scintillation calorimeter)
 → reconstruct gamma variables
 but limited angular coverage (~ 11% of solid angle)

- **Magnetic Spectrometer** (drift chamber + plastic scintillator)
 → detect the positron
 but non-uniform magnetic field selects $E>45$ MeV positron

Detectors must provide high resolution **charge** and **time** reconstruction despite the extreme occupancy

All **signals sampled at >=1.4 GHz**

+ Full waveform stored for **offline processing**

- Noise rejection
- Pileup identification and subtraction
- Feature extraction
- Hit clustering
- …
High speed digitization: the WaveDAQ system

Full MEG II experiment needs ~9000 channels: commercial FADCs too slow or too costly → DRS4 ASIC Chip

Analog switched capacitor array: analog memory with depth of 1024 sampling cells
Developed at PSI, provides a “snapshot” of signal before trigger time

Extensively used also in MEGI

800 MSPS ↔ 5 GSPS sampling speed

Strong constrain on trigger system:
decision must happen before 1024 samples are collected

\[T^{Max} = \frac{1024}{f_{sampl}} \]

Trigger latency < 731ns @1.4 GHz
High speed digitization: the WaveDAQ system

Full MEG II experiment needs ~9000 channels: commercial FADCs too slow or too costly → **DRS4 ASIC Chip**

Analog switched capacitor array: analog memory with depth of 1024 sampling cells
Developed at PSI, provides a “snapshot” of signal before trigger time

800 MSPS ↔ 5 GSPS sampling speed

Extensively used also in MEGI

Strong constrain on trigger system:
decision must happen before 1024 samples are collected

\[T_{Max} = \frac{1024}{f_{sampl}} \]

Trigger latency < 731ns @1.4 GHz

WaveDREAM board:
16 ch Drs4 REA
dout Module (10cm x 16 cm)
Waveform digitizer with two DRS4 each with 80 MHz ADC for readout

Includes SiPM bias and amplification for Liquid Xenon detector and Timing Counter.

More details: Poster #6
“Design of the WaveDAQ System”
by S. Ritt
How to reduce the event rate?

MEG event size is 3 MB after **compression and data reduction**

At 20 Hz is ~500 TB every 3 month!
How to reduce the event rate?

MEG event size is **3 MB** after compression and data reduction
At 20 Hz is ~500 TB every 3 month!

Physics observables:
- Photon Energy E_{γ}
- Positron Momentum P_e
- Relative angle $\Theta_{e\gamma}$
- Time coincidence $T_{e\gamma}$

Require CDCH: Cannot be fully exploited by trigger
How to reduce the event rate?

MEG event size is **3 MB** after compression and data reduction
At 20 Hz is ~500 TB every 3 month!

Physics observables:
- Photon Energy E_γ
- Positron Momentum P_e
- Relative angle $\Theta_{e\gamma}$
- Time coincidence $T_{e\gamma}$

Trigger-level requests:
- Estimate E_γ through signals from Liquid Xenon photon detectors \rightarrow **QSUM trigger**
- Estimate $T_{e\gamma}$ by comparing hit time in Timing Counter and in Liquid Xenon \rightarrow **Time trigger**
- Combines $\Theta_{e\gamma}$ and P_e by checking if the pair of hits is compatible with signal topology \rightarrow **DirectionMatch trigger**

Starting from \sim100 kHz γ rate in Liquid Xenon

- Reduction factor: \sim100 \rightarrow 1 kHz rate
- Reduction factor: \sim10 \rightarrow 100 Hz rate
- Reduction factor: \sim10 \rightarrow 10 Hz rate
WaveDAQ trigger inputs

Each WaveDREAM board contains a dedicated **ADC** and **Discriminator** for all input signals.

If possible prefer the discriminator: ADC conversion takes ~100 ns.

Flexibility to implement **charge** or **time** based selection within the onboard FPGA or on the global experiment.

Signal examples:

- **Liquid Xenon Detector**
- **Timing Counter**

DRS4 “**Transparent Mode**”: same ADC for Trigger and readout.

Flexibility to implement charge or time based selection

If possible prefer the discriminator: ADC conversion takes ~100 ns.
WaveDAQ trigger subsystem

Trigger information merging by a 3-layer three made of 45 Kintex 7 Trigger Concentrator FPGA Board [TCB] using low latency serial links
WaveDAQ trigger subsystem

Trigger information merging by a 3-layer three made of 45 Kintex 7 Trigger Concentrator FPGA Board [TCB] using low latency **serial links**

Every clock cycle is important: use shift registers instead of Multi-Gigabit Transceiver trade bandwidth (640 Mbit/s * 8 lines) for latency (~40 ns)

1 custom crate = 16 WaveDREAMs = 256 channels

Multi-crate systems up to 16384 channels
QSUM trigger computes the **weighted sum** of pedestal-subtracted signal amplitude

\[E_{\gamma} \approx \sum_{i \in LXe} g_i (V_i - V_{i,\text{pedestal}}) \]

This selection have to account for **ADC conversion time**
- slowest path of trigger selection
- use amplitude: cannot afford to integrate signal charge

Pedestal estimated “on the fly” from previous samples to subtract low frequency noise

Channel-by-channel weight \(g_i\) to account for:
- Gain
- Detection efficiency
- Detector type (SiPM-PMT)
- Ageing speed
-
QSUM trigger: design

QSUM trigger computes the **weighted sum** of pedestal-subtracted signal amplitude

\[E_\gamma \approx \sum_{i \in L \times e} g_i (V_i - V_{\text{pedestal}}) \]

Channel-by-channel weight \(g_i \) to account for:

- Gain
- Detection efficiency
- Detector type (SiPM-PMT)
- Ageing speed
-

This selection have to account for **ADC conversion time**

\[\rightarrow \text{slowest path of trigger selection} \]

\[\rightarrow \text{use amplitude: cannot afford to integrate signal charge} \]

Pedestal estimated “on the fly” from previous samples to subtract low frequency noise

Use of **DSP48 primitives** of Xilinx FPGAs to compute difference, product and for the summation speedup

Lesson learn: Exploit your FPGA resources
QSUM trigger: performance

Two main **calibration sources** for Liquid Xenon detector

C-W proton accelerator
1 MeV proton on Li BO\(_4\) target

Energy calibration lines:
\[p^6\text{Li} \rightarrow \ ^7\text{Be} \, \gamma (17.6 \text{ MeV}) \]
\[\rightarrow ^7\text{Be} \, \gamma (14.6 \text{ MeV}) \]

Thee times a week

Charge Exchange reaction
Change from \(\mu^+ \) to \(\pi^- \) beam on liquid hydrogen target

\[\pi^- \, p \rightarrow \pi^0 \, n \]

Movable array of BGO Crystals

Once in the year

3.5% trigger energy resolution @17.6 MeV

2.4% trigger energy resolution @ 55 MeV

Current offline energy reconstruction: 1.8% @signal energy
QSUM trigger addendum: Q/A selection

Well-known property of Noble Gas scintillators:

Emission time of photons depends on energy deposit mechanism

- **α-like**
 - Fast
 - Xe + energy \rightarrow Xe*
 - Xe* + Xe \rightarrow Xe$_2^*$ \rightarrow 2 Xe + photon

- **γ-like**
 - Slow
 - Xe + energy \rightarrow Xe$^+$ + e$^-$
 - Xe$^+$ + Xe \rightarrow Xe$_2^+$
 - Xe$_2^+$ + e$^-$ \rightarrow Xe$_2^{**}^*$ \rightarrow Xe$_2^{**}^*$ + heat
 - Xe$_2^{**}^*$ \rightarrow 2 Xe + photon

Graph showing mV vs. time (ns) for α-like and γ-like reactions.
QSUM trigger addendum: Q/A selection

Well-known property of Noble Gas scintillators:
Emission time of photons depends on energy deposit mechanism

α-like Fast
Xe + energy → Xe*
Xe* + Xe → Xe2* → 2 Xe + photon

γ-like Slow
Xe + energy → Xe\(^+\) + e\(^-\)
Xe\(^+\) + Xe → Xe\(_2\)^\(^+\)
Xe\(_2\)^\(^+\) + e\(^-\) → Xe\(_2\)^\(*\) → Xe\(_2\)^\(*\) + heat
Xe\(_2\)^\(*\) → 2 Xe + photon

Online pulse shape discrimination

Preliminary

25 point-like alfa sources on wires in LXe
Localized energy deposit (40μm range) for detection efficiency monitoring & calibration

Charge/Height ratio provides discrimination capability online using DSP48 resources in TCBs

Good enough for triggering: further selection offline with template fitting
DirectionMatch trigger: design

Online track fitting is not feasible: rely only on Liquid Xenon - Timing Counter channel correlation

1. Search Max on the inner face of Liquid Xenon detector
 - Inner face
 - Reduce combinatorial: group channels in 4x4 SiPM “Patches” (6x6 cm)

2. Search Hit position in Timing counter
 - Reduce fake combinatorial: Select only first “Tile” hit

Single sensor in Liquid Xenon detector is sensitive to shower fluctuations ($R_{\text{Molière}}^{\text{LXe}} = 5.2 \text{ cm}$)
DirectionMatch trigger: design

Online track fitting is not feasible: rely only on Liquid Xenon - Timing Counter channel correlation

1. Search Max on the inner face of Liquid Xenon detector
 - Inner face
 - Reduce combinatorial: group channels in 4x4 SiPM “Patches” (6x6 cm)

2. Search Hit position in Timing counter
 - Reduce fake combinatorial: Select only first “Tile” hit

3. Check position of TC hit is consistent with signal positrons (Lookup Table from MC)
 - 97% efficiency requested on MC

Single sensor in Liquid Xenon detector is sensitive to shower fluctuations ($R_{\text{Molière}}^{\text{LXe}} = 5.2$ cm)

Lesson learn: Exploit your detector strengths!
DirectionMatch trigger: performance

Operated for the first time in MEG II during 2021 beam time:
Availability of all electronics channel was crucial to explore the whole solid angle

Strategy: check bias induced using dedicated reduced bias trigger

<table>
<thead>
<tr>
<th>Num</th>
<th>Trigger</th>
<th>Enabled</th>
<th>Prescaling</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MEG</td>
<td></td>
<td>2</td>
<td>16.308645</td>
</tr>
<tr>
<td>1</td>
<td>MEG low Q</td>
<td></td>
<td>86</td>
<td>80.847122</td>
</tr>
<tr>
<td>2</td>
<td>MEG wide Angle</td>
<td></td>
<td>60</td>
<td>60.56076</td>
</tr>
<tr>
<td>3</td>
<td>MEG wide Time</td>
<td></td>
<td>31</td>
<td>28.639572</td>
</tr>
</tbody>
</table>

Physics trigger
“Reduced bias”

Caveat: Sensitive to offline reconstruction performance of Liquid Xenon detector and Positron Spectrometer
Offline algorithm development still ongoing

Clear effect of reduction of events with opening angle < 3 srad
Modern FPGA input tiles have integrated shift registers: **Oversampling** of input signals

Can get signal timing timing at 1/n of the clock cycles resolution (n=8)

Minimal logic and latency need: encoder at output to identify transitions

Resolution @80 MHz: $12.5\, \text{ns}/8 \sim 1.56\, \text{ns}$

Single channel $\sigma = \frac{1.56\, \text{ns}}{\sqrt{12}} \sim 450\, \text{ps}$

Lesson learn: Do not over-engineer
Time trigger: design

Modern FPGA input tiles have integrated shift registers: **Oversampling** of input signals

Can get signal timing timing at 1/n of the clock cycles resolution (n=8)

Minimal logic and latency need: encoder at output to identify transitions

To Hit identification logic

Lesson learn:
Do not over-engineer

Resolution @80 MHz: 12.5 ns/8 ~ 1.56 ns

Single channel $\sigma = \frac{1.56 \text{ ns}}{\sqrt{12}} \sim 450$ ps

LXe Inner face: 4092 VUV SiPMs

Timing counter scintillator:
Two side SiPM readout

average both ends

average all channels within this region
Time trigger: performance

Detector time resolution (<100ps) much better than trigger one: only relevant effect is trigger

Extract trigger effect from ratio of two distribution

~3ns coincidence resolution
Time trigger: performance

Detector time resolution (<100ps) much better than trigger one: only relevant effect is trigger

Source of bias observed in depth dependence of time reconstruction:
Time walk on discriminator because of slow MPPC risetime (0.1 mV/ns)

~3ns coincidence resolution

Extract trigger effect from ratio of two distribution
Conclusions and prospects

MEG II ended its first **Physics run** in 2021.
Data sanity check: radiative decays observed!

Definitely a major step toward the $\mu \rightarrow e\gamma$ physics data taking next years

The **WaveDAQ system** was successfully deployed (x8 more channels than 2020) and the DAQ side performed extremely well.

MEG II trigger system performed very smoothly for the first time with all electronics.
Refinements planned for 2022, especially on the timing of the Liquid Xenon signals.

WaveDAQ application to other experiments:
poster #49 → “The fragmentation trigger of the FOOT experiment”
poster #257 → “Looking for Cherenkov light in liquid Xenon with LoLX”
Dipole and 4-lepton operator

Additional EM vertex needed to convert an operator to the other

Dipole operator

\[\mu \rightarrow e\gamma \]

\[\mu \rightarrow \text{ee} \]

4 lepton operator

\[\mu \rightarrow \text{eee} \]

\[\mu N \rightarrow eN \]

Huge theoretical effort on combining results from various processes

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \sum_{\alpha} C^{(5)}_{\alpha} O^{(5)}_{\alpha} + \frac{1}{\Lambda^2} \sum_{\alpha} C^{(6)}_{\alpha} O^{(6)}_{\alpha} + \ldots
\]

\(C^{(i)}_{\alpha} \) = coupling associated to operator \(O^{(i)}_{\alpha} \)

\(\Lambda \) = scale of physics being integrated

\(\Lambda = 1 \text{ TeV} \)

<table>
<thead>
<tr>
<th>Model</th>
<th>(\mu \rightarrow \text{eee})</th>
<th>(\mu N \rightarrow eN)</th>
<th>BR((\mu \rightarrow \text{eee})) / BR((\mu \rightarrow e\gamma))</th>
<th>CR((\mu N \rightarrow eN)) / BR((\mu \rightarrow e\gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM</td>
<td>Loop</td>
<td>Loop</td>
<td>(\approx 6 \times 10^{-3})</td>
<td>(10^{-3} - 10^{-2})</td>
</tr>
<tr>
<td>Type-I seesaw</td>
<td>Loop*</td>
<td>Loop*</td>
<td>(3 \times 10^{-3} - 0.3)</td>
<td>(0.1 - 10)</td>
</tr>
<tr>
<td>Type-II seesaw</td>
<td>Tree</td>
<td>Loop</td>
<td>((0.1 - 3) \times 10^{3})</td>
<td>(O(10^{-2}))</td>
</tr>
<tr>
<td>Type-III seesaw</td>
<td>Tree</td>
<td>Tree</td>
<td>(\approx 10^{3})</td>
<td>(O(10^{3}))</td>
</tr>
<tr>
<td>LFV Higgs</td>
<td>Loop\dag</td>
<td>Loop*\dag</td>
<td>(\approx 10^{-2})</td>
<td>(O(0.1))</td>
</tr>
<tr>
<td>Composite Higgs</td>
<td>Loop*</td>
<td>Loop*</td>
<td>(0.05 - 0.5)</td>
<td>(2 - 20)</td>
</tr>
</tbody>
</table>

Marco Francesconi

17 / 15

Pisa Meeting on advanced detector, 27-05-2022

https://doi.org/10.1393/ncr/i2018-10144-0
MEG experiment: signature and backgrounds

Signal

\[e^+ \quad \mu^+ \quad \rightarrow \gamma \]

Physics Background:

\[e^+ \quad \mu^+ \quad \nu \quad \rightarrow \gamma \]

Accidental Background:

\[e^+ \quad \mu^+ \quad \nu \quad \rightarrow \gamma \]

\[R_{\text{Rad}} = R_\mu \text{BR}(\mu \rightarrow e\nu\bar{\nu}\gamma | \Delta E_\gamma, \Delta E_e, \Delta \Theta_{e\gamma}) \]

\[R_{\text{Acc}} \approx R_\mu^2 \cdot \Delta E_e \cdot \Delta E_{\gamma}^2 \cdot \Delta \Theta_{e\gamma}^2 \cdot \Delta T_{e\gamma} \]

Dominating for high muon rates

\[R_\mu \]

Photon from: Radiative, AIF, Bremsstrahlung

Marco Francesconi
MEG I - MEG II comparison

Design performances

<table>
<thead>
<tr>
<th></th>
<th>MEG I</th>
<th>MEG II</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{e^+} (keV)</td>
<td>380</td>
<td>130</td>
</tr>
<tr>
<td>θ_{e^+} (mrad)</td>
<td>9.4</td>
<td>5.3</td>
</tr>
<tr>
<td>ϕ_{e^+} (mrad)</td>
<td>8.7</td>
<td>3.7</td>
</tr>
<tr>
<td>E_{γ} $w_{\gamma} > 2;\text{cm}(%)$</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>E_{γ} $w_{\gamma} < 2;\text{cm}(%)$</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>u_{γ} (mm)</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>v_{γ} (mm)</td>
<td>5</td>
<td>2.2</td>
</tr>
<tr>
<td>$t_{e^+\gamma}$ (ps)</td>
<td>122</td>
<td>84</td>
</tr>
</tbody>
</table>

Liquid Xenon Drift Chamber Timing Counter
Photon detector: the Liquid Xenon detector

- 4092 UV SiPMs 12mmx12mm
- Optimised positions of the remaining 668 PMTs

<table>
<thead>
<tr>
<th></th>
<th>MEG</th>
<th>MEG II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>5 mm</td>
<td>2.4 mm</td>
</tr>
<tr>
<td>Energy</td>
<td>2.4%-1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Timing</td>
<td>67 ps</td>
<td>60 ps</td>
</tr>
</tbody>
</table>

More details: Poster #332
“Commissioning of Liquid Xenon Gamma-Ray Detector for MEG II Experiment” by A. Matsushita
The Cylindrical Drift Chamber

Single volume stereo drift chamber with He:Isobutane
- $1.5 \times 10^{-3} X_0$ per turn
- Drift cells 6mm x 6mm to cope with pileup (PCB-based construction)
- ~65 hits per track (MEG: ~12)

More details: Poster #236
“Analysis and study of the problems on the wires used in the MEG CDCH and the construction of the new drift chamber”
by G. Chiarello

<table>
<thead>
<tr>
<th></th>
<th>MEG</th>
<th>MEG II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>29%</td>
<td>65%</td>
</tr>
<tr>
<td>Theta</td>
<td>9.4 mrad</td>
<td>6.7 mrad</td>
</tr>
<tr>
<td>Momentum</td>
<td>306 keV/c</td>
<td>100 keV/c</td>
</tr>
</tbody>
</table>
The pixelated Timing Counter

Final detector fully tested with **full beam intensity**

(7 \(10^7 \) \(\mu \)s):

- 256 scintillating “Tiles” per module
- Multiple hits belonging to the same **positron track**
- Tracking capability to seed CDCH tracks
- Auxiliary Laser for stability monitoring

More details: Poster #184

“Operational results with the pixelated timing Counter (pTC) of the MEGII experiment during the first year of physics data taking”

by P.W. Cattaneo

<table>
<thead>
<tr>
<th></th>
<th>MEG</th>
<th>MEG II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>62 ns</td>
<td>30 ns</td>
</tr>
</tbody>
</table>
WaveDREAM detail

Analog Frontend

- 2 x 8 channels...
- SiPM biasing

Ethernet readout

- Ethernet readout
- Crate connector
Serial links

- **8 bit word sent each clock period:** 640 Mbps with 3 clk cycles latency
- Backplane track length different for each slot
- Delay to sample “value” stable moment
- Bitslip to align characters within each word
- Automatic slot by slot calibration needed → Finite State Machine
Trigger latency translate in peak position in the DRS4 window

If it exceed $1024/f_{\text{DRS}}$ the signal falls outside DRS snapshot window

Final WaveDREAMs have a quicker ADC:
- Still 80 MHz speed but smaller latency
- Trigger latency improved by ~ 120 ns
- Current algorithms run in 560 ns
- 1.8 GHz sampling speeds possible

Constraint on additional baseline for offline analysis
Multithreaded DAQ system

TDAQ Software completely written in c++11:

- High parallelization
- Tailored to MEG II TDAQ needs
- Use new c++ thread interface
- Provides key-value storage of board parameters
- Can add other stages (zero suppression, feature extraction…)
- Optional disk writing or interface with other DAQ software (MIDAS for MEG II)
- Flexibility to face system scaling:
 - More packet collectors
 - More Waveform Calibration threads
The challenge of datasize and dead time

Main drawbacks of high speed digitizers approach:

Huge single-channel data size: 1.5 KB/waveform

Enormous uncompressed event: 12.4 MB/event

DRS4 does not convert data in real time

Takes 375 μs to download the samples after a trigger is generated

Continuous beam: dead time = event loss

Goal 24 Hz Trigger rate:
Live time fraction is 99%
Data taking perspectives, depending on annealing

Three DAQ scenarios

- A: MEG II intensity run w/o annealing
- B: Half of MEG II intensity run w/o annealing
- C: MEG II intensity run w/ annealing at PDE 5% during run

Assumption

- Worst case of PDE decrease (2% after 60 days MEG II intensity, measured speed in 2019)
- 140 days beam time per year (84% live time)
- Annealing requires 60 days