

AugerPrime: the Pierre Auger Observatory upgrade

OBSERVATORY

Gioacchino Alex Anastasi, on behalf of the Pierre Auger Collaboration

15th Pisa Meeting on Advanced Detectors La Biodola, 22-28 May 2022

The Pierre Auger Observatory

Hybrid detection of extensive air showers

Array of water-Cherenkov tanks

- 1600 in a 1.5 km grid of 3000 km²
- ▶ 61 in a 750 m grid of 30 km² (Infill)

Fluorescence telescopes (FD)

- 24 in 4 buildings overlooking the array - elevation 0°-30°
- ► 3 overlooking the Infill (*HEAT*)
 - elevation 30°-60°

Engineering array of underground muon detectors (*AMIGA*) in the Infill area.

Array of radio antennas (AERA)

153 stations covering ~17 km²

Around the center of the array : monitoring & laser facilities

More than 15 years of data and results

- Flux suppression well established : effect of propagation (GZK effect) and/or maximum acceleration at sources ?
- Composition mixed and heavier above ~ 2x10¹⁸ eV from X_{max} measurements ... but statistics too low above ~10^{19.5} eV due to FD duty cycle ~15%.
- Large scale dipolar anisotropy (6.6 σ) : extragalactic origin for UHECR > 8 EeV

+

Hints of correlation with SBG/AGN directions for UHECR > 40 EeV → Quest for sources still open.

- Muon puzzle: muon content in simulations lower than in data Tension with all hadronic models.
- ... and many more

AugerPrime

AugerPrime scientific case

Primary goal : mass composition of UHE

- to study the origin of the suppression
- to accomplish composition-driven anisotropy analyses e.g. if 10% of protons at the highest energies
- to study the hadronic interactions at energy much larger than human made accelerators (hints of new physics ?)
- to provide better estimates of y and v flux (explore potential of future experiments)

AugerPrime

The upgrade of the Observatory

Surface Scintillator Detector (SSD)

different response to electromagnetic & muonic shower components w.r.t. WCD

Radio antenna

to measure the radio emission of showers in atmosphere (30-80 MHz)

Underground Muon Detector (UMD)

direct muon measurement and cross-check of SSD-WCD combined analysis

Small PMT (SPMT)

increase of the dynamic range of WCD measurements

Upgraded Unified Electronics (UUB)

to process the signals from all the new detectors with improved performances

Auger Preliminary Design Report [arXiv:1604.03637] A. Castellina, EPJ Web of Conf.210 (2019) 06002

The Scintillator Surface Detector (SSD)

G. Cataldi, PoS(ICRC2021)251

The Underground Muon Detector (UMD)

Each module : 64 scintillator strips with

wavelength-shifting optical fiber coupled to an array of silicon photomultipliers (SiPMs)

Binary mode (64 traces) to count single muons ADC mode (64 SiPM signals summed) to measure a high number of muons in EAS

The Radio Detector array (RD)

- measurement of e.m. component in inclined showers (zenith > 60°) via radio emission
 - complementarity with SSD+WCD
 - complementarity with UMD (low energy region)
- ~300 km² of RD equals the yearly exposure of FD (duty cycle RD ≈ 95% vs FD ~ 15%)

For technical details and expected performances Bjarni Pont, PoS(ICRC2019)395 Felix Schlüter, PoS(ICRC2021)262

World-largest radio detector

for extensive air showers at UHE.

1661 dual-polarized Short Aperiodic
Loaded Loop Antennas (SALLAs)
1.2 m diameter, mounted on top of each WCD (slave-trigger mode).

The Small PMT (SPMT)

Hamamatsu R8619 1-inch diameter PMT

Linearity and gain curves of each SPMT carefully measured (M. Buscemi et al., 2020 JINST **15** P07011)

New HVPS module (A7501B) developed by CAEN & INFN-Torino

Validation of 1600+ unit (G.A. Anastasi et al., 2022 JINST 17 TO4003)

Active SPMT area ~1/100 of the 9-inch WCD PMTs direct measurement of (very large) density of particles up 200-300 m from the shower core.

The Upgraded Unified Electronics (UUB)

On a single board : analog signal processing, triggering, calibration (WCD + SSD PMTs), interface with UMD and RD systems, GPS time tagging, data acquisition and communications via radio transmitter.

With respect to old electronics :

- faster ADCs (40 -> 120 MHz)
- larger dynamic range (10 ->12 bits)
- significantly more powerful FPGA
- upgraded CPU (> 10 times faster)
- backwards-compatibility (fit the enclosure of current electronics + accept the existing PMT, GPS antenna and communication cables)

Technical details in G. Marsella, PoS(ICRC2021)230

Manufacturer test (SITAEL company)

- automated optical inspection
- semi-automatic test bench
 (installation of operative system + full functionality test)

Environmental Stress Screening test @ Institute of Physics, Prague - details in M. Bohacova, PoS(ICRC 2019) 199

Measurements with AugerPrime

AugerPrime

Conclusions

AugerPrime :

10⁴ =

 10^{3}

 10^{2}

 $|0^1$

 10^{0}

Energy Fluence [eV/m²]

largest exposure detector for UHECR with composition sensitivity above 4 x 10¹⁹ eV

- \star Deployment and commissioning to be completed by mid 2023.
- \star Data taking foreseen up to 2030.

 10^{5}

 10^{4}

10³

 10^{2}

10¹

100

 10^{-1}

 10^{2}

Signal Density [VEM/m²]

 \star Fundamental input for future experiments.

May 14, 2019 $E/EeV = 73.5 \pm 1.6$

 $\theta/^{\circ} = 45.20 \pm 0.12$

· 10⁰

 10^{4}

⊑ 10⁰

 10^{-1}

15th Pisa Meeting, 23/05/2022

 10^{3}

Shower Plane Distance [meter]

Backup

Deployment status

All SSD tested with cosmic-ray muons :(i) to check the light tightness;(ii) to determine the response to a reference minimum-ionizing particle

Left: average logarithm of the deposited charges in 1 cm \times 1 cm bins for one SSD as measured in a muon tower.

Calibration performed using atmospheric muon signals acquired by dedicated triggers.

WCD PMTs unit : VEM Vertical Equivalent Muon

SSD PMT unit : MIP Minimum-Ionizing Particle

About 40% of WCD calibration triggers produce a MIP in the SSD.

First peak : low energy e^{\pm} , γ Second peak : VEM estimate First peak : pedestal (integral of baseline) Second peak : MIP estimate

Schematics of the laboratory setup (left) used to characterize the UMD traces and average traces (right) for the binary and ADC modes, measured at different optical-fiber lengths

- Radio emission not absorbed in atmosphere
 - signals depends on the source distance and not on the amount of traversed matter
- Radiation strongly forward-beamed into a cone of few degrees :
 - vertical shower: small footprint, strong signals
 - inclined shower: large footprint, weaker signals
- ✓ Nearly full efficiency for θ ≥70° at high energies

End-to-end pilot calibration using the Galactic radio emission (Tomáš Fodran, PoS(ICRC2021)270)

Target : absolute calibration of the Radio Detector

- Measurement of power as a function of frequency and local sidereal time (LST), separately for the EW and NS channels.
- Simulations using different sky temperature map models and different antenna models.
- Comparison to estimate calibration constant and background noise.

SPMT

AugerPrime

Radio emission mechanism

The 30–80 MHz band is used by most experiments.

Due to coherence effects, the cosmic-ray-induced radio emission is strongest below 100 MHz.

Atmospheric noise and short-wave band transmitters make measurements below 30 MHz unfeasible.

From 85 to 110 MHz the FM band interferes with measurements.

Geomagnetic emission

- geomagnetic field deflects e- and e+ in opposite directions —> transverse current varying over time
- linear polarisation of the radiation (E aligned along the Lorentz force)
- propagation along the shower axis

Askaryan effect

- ionisation of ambient medium by EAS particles:
 e+ annihilation —> excess of e- along the longitudinal development
- linear polarisation of the radiation (E radially oriented wrt EAS axis)
- sub-dominant in EAS

AugerPrime