

**IFIN-HH** 



# High Rate, High Granularity, Timing Multi-Strip Multi-Gap Resistive Plate Counter

Mariana Petris, Daniel Bartos, Andrei Caragheorgheopol, Daniel Dorobantu, Mihai Petrovici National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania

> Jochen Frühauf GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany

Ingo Deppner, Norbert Herrmann Physikalisches Institut der Universität Heidelberg, Germany





15<sup>th</sup> Pisa Meeting on Advanced Detectors

# Outline

Motivation – next generation high counting rate, high multiplicity experiments,

(e.g. CBM/FAIR, Darmstadt ->TOF inner wall)

**MSMGRPC** with high granularity and impedance matching

- Construction details, cosmic rays and radioactive source tests
- > In-beam and high counting rate test of the MSMGRPC
- >Aging investigations and observed effects

First MSMGRPC prototype with directed gas flow-> construction and in-beam tests
 Summary and Outlook

#### **High interaction rate experiments -> CBM/FAIR** ToF CBM Interaction Rate (Hz) 10<sup>4</sup> 10<sup>4</sup> 10<sup>4</sup> 10<sup>4</sup> 10<sup>4</sup> 10<sup>4</sup> CBM Collaboration, EPJA 53 3 (2017) 60 TRD T.Galatyuk, NPA982 (2019), update (2021) **MuCH** Dipole PSD SPS NA60+ magnet BM@N ALICE sPHENIX MVD ICA MPD STAR STS RICH 10<sup>2</sup> BES-II2019 10 20 30 4 5 6 7 2 3 10 100 200

#### **CBM experiment at FAIR/SIS100:**

- A+A collisions,  $E_{kin} = 2.5A - 11A \text{ GeV}$ 

- Systematically explore QCD matter at large baryon densities with high accuracy and rare probes MVD: Micro Vertex Detector\* STS: Silicon Tracking System\* \* inside magnetic field MuCh / RICH Muon Chamber System / Ring Imaging Cherenkov Detector TRD: Transition Radiation Detector ToF: Time-of-Flight Detector PSD: Projectile Spectator Detector

Collision Energy  $\sqrt{s_{NN}}$  (GeV)

•Tracking acceptance:  $2.5^{\circ} < \theta_{Lab} < 25^{\circ}$ 

- •Peak R<sub>int</sub> is 10 MHz for Au+Au
- •Fast & radiation hard detectors
- •Free-streaming DAQ
- •4D tracking (space, time)
- •Online event selection & reconstruction
- •Data rate: 1 TB/sec

# **CBM – TOF wall**





#### **CBM-ToF Requirements**

- > Full system time resolution  $\sigma_{\rm T} \sim 80$  ps
- Efficiency > 95%
- **>** Rate capability  $\leq$  30 kHz/cm<sup>2</sup>
- Polar angular range 2.5° 25°
- Active area of 120 m<sup>2</sup>
- Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition

#### Charged hadron identification -> Time-of-Flight (TOF) measurement

FLUKA simulation: Au + Au collisions at  $E_{kin}$  = 11A GeV, 10<sup>7</sup> interactions/s Charged particle flux at a distance of 8 m from the target



Detectors with different rate capabilities and granularities are needed as a function of polar angle

<u>Our R&D activity  $\rightarrow$  MSMGRPCs for the inner wall :</u>

- highest counting rate
- highest granularity
- ~15  $m^2$  active area

#### CBM – TOF Technical Desing Report, October 2014

## **Prototype design considerations**



## **Prototype design considerations**



Vtran (Output5)

- The overlapped readout strips and the materials in between define a signal transmission line (STL)
- STL impedance depends on the readout strip width and the properties of the material layers in between

Readout electrode: 9.02 mm pitch= 1.27 mm w + 7.75 mm g High Voltage electrode: 9.02 mm pitch= 7.37 mm W + 1.65mm g



#### $97 \ \Omega$ signal transmission line impedance (APLAC simulation) matched to the FEE input impedance

Romanian Journal of Physics 63, 901 (2018)

## **MSMGRPC** prototype assembling

High voltage (HV) electrode



Anode readout electrode



#### Cathode readout electrode



Spacer distribution across the surface







#### Two counters mounted on the back panel



Ready to be closed by the housing box



Mounting the housing box



## Experimental setup for cosmic rays & <sup>60</sup>Co tests in HPD/IFIN-HH DetLab



# Some view Max Max

#### for each RPC:

- 16 operated strips, readout at both ends
- (16 x 0.902 cm) x 6 cm = 86.6 cm<sup>2</sup> operated area
- NINO FEE (ALICE Coll.)+CAEN TDCs
- Plastic size = 1.5 cm x 1.5 cm x 10 cm
- Gas mixture:  $90\%C_2H_2F_4 + 5\%SF_6 + 5\%iso-C_4H_{10}$

| MSMGRPC | I <sub>dark</sub> | Dark<br>rate             |
|---------|-------------------|--------------------------|
| RPC1    | < 1 nA            | 0.11 Hz/cm <sup>2</sup>  |
| RPC2    | < 1 nA            | 0. 14 Hz/cm <sup>2</sup> |

## I. Cosmic ray measurements 2D mapping in self-trigger mode





## II. <sup>60</sup>Co source measurements



## 2D mapping in self-trigger mode



## In-beam tests $2021 \rightarrow mCBM@SIS18/GSI$

#### **Tracking setup:**

• 6 counter stations in stack

M6\_1

M4 3

M4\_5

Test counte

Test counter

Analysis  $\rightarrow$  one station as DUT and 5 ٠ reference stations as tracking

M4\_1

Moderate particle flux arm

High particle flux arm

(+test counter)/

Reference for other subsystems

12°

Beam

Beam: <sup>16</sup>O, 2A GeV

**Reference mTOF** Counters (M4\_4)

Test counters: USTC, China

**Test counters: IFIN-HH**, Romania

**Reference mTOF** Counters (M4\_5)

FEE board for the inner TOF wall (J. Frünhauf) PADI XI (IEEE Trans. Nucl. Sci., vol. 68, no. 6, p. 1325) + GET4 (IEEE Nucl. Sci. Sym. Conf. Rec. (2009) 295)



Diamond T0

Target

Au/Ni

Mariana Petris, 15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Italy, 22<sup>nd</sup> - 28<sup>th</sup> May 2022

25

## **In-beam test results**



Mariana Petris, 15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Italy, 22<sup>nd</sup> - 28<sup>th</sup> May 2022

#### 11

## **In-beam test results**



High counting rate scan

Mariana Petris, 15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Italy, 22<sup>nd</sup> - 28<sup>th</sup> May 2022

## **Aging investigations**

# - IRASM/IFIN-HH multipurpose irradiation center - <sup>60</sup>Co source activity: 360 kCi; Dose rate = 0.3 kGy/h



Equivalent particle flux = 80 - 310 kHz/cm<sup>2</sup>

#### Motivation: the detector will maintain its performance over the lifetime of the experiment

| Date<br>(dd/mm) | Gas flow<br>(l/h) | Duration<br>(hours) | $I (\mu A)$ | $\langle Q \rangle$ (C) | Doze rate<br>(kGy/h) | Cumulated<br>dose (kGy) |
|-----------------|-------------------|---------------------|-------------|-------------------------|----------------------|-------------------------|
| 10.11           | 4                 | 3:45                | 105         | 1.4175                  | 0.3267               | 1.225                   |
| 11.11           | 4                 | 2:30                | 125         | 1.125                   | 0.3267               | 2.096                   |
| 12.11           | 4                 | 3:00                | 106         | 1.1448                  | 0.3267               | 3.076                   |
| 13.11           | 4                 | 3:00                | 168         | 1.8144                  | 0.3267               | 4.056                   |
| 16.11           | 4                 | 3:20                | 289         | 3.468                   | 0.3222               | 5.130                   |
| 17.11           | 4                 | 3:30                | 363         | 4.5738                  | 0.3222               | 6.258                   |
| 18.11           | 8                 | 6:35                | 254         | 6.0198                  | 0.3222               | 8.379                   |
| 20.11           | 4                 | 4:00                | 397         | 5.7168                  | 0.3145               | 9.637                   |
| 23.11           | 4                 | 3:10                | 233         | 2.6562                  | 0.3145               | 10.633                  |
| 23.11           | 8                 | 3:00                | 288         | 3.1104                  | 0.3145               | 11.577                  |
| 24.11           | 8                 | 4:30                | 246         | 3.990                   | 0.3145               | 12.992                  |
|                 | Total             | 40:33               |             | 35.0367                 |                      | 12.992                  |
|                 |                   |                     |             |                         | <b>/</b> ,           | $\overline{}$           |

Total accumulated dose (w/o HV) = 77 kGy

Accumulated charge by the exposed MSMGRPC:  $35.0367 \text{ C} / 276.5 \text{ cm}^2 = 0.127 \text{ C/cm}^2$ 

Estimated accumulated charge in the CBM TOF inner zone in 1 month of running at the highest interaction rate:  $(10^7 \text{ int/s})= 0.7154 \text{ C/cm}^2/\text{month}$ 

## Aging effects on MSMGRPC performance



After flushing the counter with fresh working gas for two weeks:

- dark current and dark rate reached almost the same values as before the irradiation

- efficiency and cluster size were not significantly affected

Nucl. Inst. and Methods A 1024 (2022) 166122

## **Aging effects – optical investigations**



**Spacer – microscope photo** 





**Removable deposition** 

#### Non-removable deposition



NODE

## Aging effects – chemical composition of the deposited layers

Energy- Dispersive X-ray (EDX) spectrometry analysis of the chemical composition of non-irradiated and irradiated glass plates

#### Non-irradiated glass plate

#### **Irradiated glass plate**



The fluorine percentage on the surface of the glass electrodes exposed in the MSMGRPC in high irradiation dose is significant and different for the two surfaces. Not exposed glass does not contain fluorine.

Nucl. Inst. and Methods A 1024 (2022) 166122

# First prototype with a directed flow design consideration and assembling -



- Directed gas flow through the gas gaps.
- Spacers run across the strips, not along the strips, as for previous counters.
- Spacers positioned outside the electric field area.
- 5.6 cm strip length instead of 6 cm (previous ones).

#### Equal gas flow through the two stacks



## First prototype with a directed flow - laboratory tests -

## HV conditioning & first signals @ HPD/IFIN-HH DetLab







## mCBM@SIS18 July 2021 in-beam test results



Mariana Petris, 15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Italy, 22<sup>nd</sup> - 28<sup>th</sup> May 2022

## mCBM@SIS18 July 2021 in-beam test results high counting rate



Hit position

**ToT distribution** 

HV = 2 x 5.9 kV ; Th = 200 mV;

Mariana Petris, 15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Italy, 22<sup>nd</sup> - 28<sup>th</sup> May 2022

# Summary & Outlook

- MSMGRPC prototypes with high granularity and impedance matched to the FEE were assembled and tested in

the Lab with <sup>60</sup>Co source & cosmic rays proving very good efficiency and time resolution.

- In -beam tests in the mCBM setup confirmed the obtained results and showed that the efficiency and time resolution are still very good up to a counting rate  $\geq 25 \text{ kHz/cm}^2$ .
- The aging tests showed an important gas pollution effect which could limit the lifetime of the counter.
- Proposed mitigation solutions is a MSMGRPC prototype with a directed flow through the gaps. It performed in the in-beam test in the mCBM/SIS18 setup in July 2021; it was also tested in March 2022 (data analysis is in progress).
- Aging tests using this prototype will be performed in the near future at a lower dose rate and longer exposure time.
- Design of a directed gas flow in wider counters (100/200 mm wide) are in progress based on the already gained experience.

# **Frontier Detectors for Frontier Physics** 15<sup>th</sup> Pisa meeting on advanced detectors

La Biodola • Isola d'Elba • Italy 22 - 28 May, 2022

Thank



ISTITUTO NAZIONAIO UL PISICA NUCIOAN



Università di Sier Dipartimento SFT Sezione Fisica



aliana



Backup

## **Threshold scan**

Run 1454: 200 mV, 2 x 6 kV

Run 1482: 150 mV, 2 x 6 kV



## **FLUKA** simulations



A.Senger, CBM-TN-18001

### **Current design of the CBM-TOF inner wall**



- 4 module types
- 12 modules
- 3 counter types: 60/100/200 x 300 mm<sup>2</sup>
- 316 counters
- 20,224 readout channels

|              | RPCs<br>(200) | RPCs<br>(100) | <b>RPCs</b> (60) | Total  |
|--------------|---------------|---------------|------------------|--------|
| No. RPCs     | 168           | 92            | 40               | 316    |
| No. channels | 10752         | 5888          | 2560             | 20,224 |