PHOTO-TRAP a low-cost solution for a large-area, low-noise SiPM pixel

Daniel Guberman

Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa Institut de Ciencies del Cosmos de la Universitat de Barcelona (ICCUB)

daniel.guberman@pi.infn.it

15th Pisa Meeting on Advanced Detectors 23th May 2022

Outline

- 1. The Photo-Trap concept
- 2. Photo-Trap protoypes
- 3. Performance
- 4. Applications and future prospects

The need of Large Area SiPMs

Probably one of the main **drawbacks** of **SiPMs** is the **lack of large-area pixels**:

- SiPMs are typically available in sizes $\leq 6x6 mm^2$
- Capacitance, dark count rate (DCR) and cost increase with size
- Larger pixels (a few cm²) can be achieved by **summing SiPMs**, but:
 - SNR degrades (single-phe resolution is often lost)
 - DCR still increases linearly with size...
 - ...and also cost

Photo-Trap

A low-cost, low-noise, large-area SiPM pixel

- A SiPM is coupled to a Wavelength shifter (WLS) plastic → WLS area >> SiPM area
- A dichroic filter is placed at the front.
 - → High *T* in the absorption band of the WLS → High *R* in its re-emission band
- **Reflectors** are placed at the **back** and **sides** of the WLS plastic

*Photo-Trap is an upgrade of the former EU project "Light-Trap" [D. Guberman et al. (2019), NIM-A, 923, 19]

2022.05.23 Pisa Meeting

The Photo-Trap concept

The Photo-Trap concept

The Photo-Trap concept

Operation principle

(i) Incident photons with the *proper* λ go through the filter, are absorbed by the WLS, re-emitted and remain **trapped** inside the pixel until they **reach the SiPM.**

(ii) Some of the absorbed photons may **escape** or be **re-absorbed** and will not reach the SiPM

(iii) Photons at **other wavelengths** are **rejected**

Photo-Trap

- Pixel area ~10-100 times area of a single SiPM.
- Pixel noise = **noise of a single SiPM**
- Pixel cost ~ **cost of a single SiPM** (if the cost of the plastic and filter are low)

Prototypes

Proof-of-concept prototypes

Main components of our prototype pixels:

- 3 mm thick EJ-286 WLS from Eljen
 - Sensitive at ~ 320 390 nm
 - Peak Emission ~ 420 nm
 - Decay time ~ 1.2 ns
 - Light Yield ~ 92%
- Asahi ZUV0400 UV-pass filter
 - T (0° AOI) > 95% @320-395 nm
 - R (0° AOI) > 98% @400-700 nm
- ON MicroFJ-30035 **SiPMs** (3x3 mm²)

- Custom-made PCB to read a single SiPM or 4 in parallel (same area than a $6 \ x \ 6 \ mm^2)$

• Berghof Optopolymer **reflective film** - R~98% > 400 nm

INFN CCUB

Proof-of-concept prototypes

Prototype configurations

Prototype I

- WLS Area ~ 20 x 20 mm²
- SiPM Area ~ 3 x 3 mm²
- Area ratio ~ 42

Prototype II

- WLS Area ~ 20 x 20 mm²
- SiPM Area ~ 3 x 12 mm²
- Area ratio ~ 10

Prototype IV

- WLS Area ~ $40 \times 40 \text{ mm}^2$
- SiPM Area ~ 3 x 3 mm²
- Area ratio ~ 170

Prototype IV

- WLS Area ~ 40 x 40 mm²
- SiPM Area ~ 3 x 12 mm²
- Area ratio ~ 42

2022.05.23 Pisa Meeting

D. Guberman - Photo-Trap

Performance evaluation

Optical Gain (G) / Trapping Efficiency (TE)

 $G = \frac{Nr \text{ of photons detected by Photo} - Trap}{Nr \text{ of photons detcted by a ' naked ' SiPM}}$

Photon reflected before

entering the detector

Optical gain/ Trapping efficiency

• Filter allows to increase the efficiency by > 25%

- With **simulations** we could identify some critical factors affecting the trapping efficiency:
 - **Thickness** of the **gaps** between WLS and filter/reflectors
 - Walls reflectivity and filter properties
 - Surface roughness...

Optical Gain/Trapping efficiency

Position-dependent sensitivity

2022.05.23 Pisa Meeting

D. Guberman - Photo-Trap

Timing performance

Arrival time distribution for 1 phe events

- Timing measurements performed using Advatech AMP-0611 preamp (~0.7 ns rise time) and pulsed LED
- Photo-Trap induces a **degradation of the timing** performance (*w.r.t.* the *naked* SiPM) which is due to:
 - **Re-emission time profile** of the WLS
 - Distribution of the **total path traveled by photons** before reaching the SiPM
 - \rightarrow **Timing** is **better** in pixels with **lower** $S_{\scriptscriptstyle WLS}/S_{\scriptscriptstyle SiPM}$
 - \rightarrow **Distributing SiPMs** in the WLS **improves** the **timing**
- For all the 4 prototypes, the additional degradation of the time resolution is of ~2-3 ns

Performance summary

	PMT	SiPM	Photo-Trap
PDE*	<mark>~35%</mark>	~50%	~5-25 %
Time resolution [ns]	<mark>~1</mark>	~0.1	<mark>~2-3</mark>
High-Voltage	Yes	No	No
Compactness	No	Yes	Yes
Ambient light exposure	No	Yes	Yes
Sensitive to Magnetic field	Yes	No	No
Largest Area [cm ²]	<mark>∼10</mark> ²	~10 ⁻¹	<mark>∼10</mark> ¹
DCR* [kHz/mm ²]	-	<mark>~50</mark>	~0.2-5
Capacitance/mm ²	Low	High	Low
Cost/mm ²	Low- Medium	High	Low

* "Educated" rough values at room temperature and ~375 nm

- WLS and filter should be **optimized** depending on the **application** (e.g.: background rejection)
- A wider sensitivity spectrum can be achieved by combining different WLS
- **Distributing SiPMs** in different positions of the WLS will **improve sensitivity** and **timing** (but also **cost** and readout **complexity**).
- Performance can probably be improved with a non "home-made" production

Applications and further developments

2022.05.23 Pisa Meeting

In general, Photo-Trap could be useful...

- When **efficiency loss** can be **compensated** with a **larger detection area**
- When **wavelength shifting** can **increase** the detection **efficiency**
- When **low noise** at **room temperature** is required
- When a **sensitivity** in a **specific wavelength** band is desired
- When **cost** is a limitation...

D. Guberman - Photo-Trap

Further developments...

Photo-Trap was funded by a INFN CSN5 call for young researchers (22260/2020). Special thanks to J. Cortina (CIEMAT), the 'father' of this project and to all who participated in the developments of the Light-Trap: D. Estrada, J.L. García, A. Mihi (ICMAB), J. E. Ward, E. Do Souto, O. Blanch (IFAE).

2022.05.23 Pisa Meeting

D. Guberman - Photo-Trap

INFŃ

Bakcup

2022.05.23 Pisa Meeting

Wavelength shifter

Eljen EJ-286 WLS plastic

- Sensitivity at ~ 320 390 nm
- Peak Emission ~ 420 nm
- Thickness [mm]: 3
- Area [mm²]: 20 x 20 / 40 x 40
- Substrate material: PVT/PS
- Decay time [ns] ~ 1.2
- Light Yield ~ 92%

Filter

Asahi ZUV0400 UV-pass filter

- Size: 50x50x1 mm³ (CA: 46x46 mm²)
- Wavelength cut ~ 400 nm
- T (0° AOI) > 95% @320-395 nm
- $R (0^{\circ} AOI) > 98\% @400-700 nm$

ON MicroFJ-30035 SiPMs

INFN

Active area: 3.07 x 3.07 mm² Nominal chip size: 3.16 x 3.16 mm²

PreAmp home-made Boards

V1 for one SiPM V2 connects 4 in parallel

Allows to switch between 2 Advatech preAmps: AMP-0604 (x20 - x60 gain, ~5 ns rise time) AMP-0611 (x10 - x20 gain, ~0.7 ns rise time)

D. Guberman - Photo-Trap

Mechanics

Berghof Optopolymer reflective film

2 mm thick film Diffuse reflection (R~98% > 400 nm)

SS-998 Optical Grease

For SiPM-WLS plastic coupling Refractive index ~ 1.47 T~99.99% above 400 nm

Pixel Holder

Fast 3D-printed prototype that holds all components Designed to apply pressure from SiPM to WLS-plastic

Timing performance

$3x3 \text{ mm}^2 \text{ SiPM} - 2x2 \text{ cm}^2 \text{ WLS}$

$3x12 \text{ mm}^2 \text{ SiPM} - 2x2 \text{ cm}^2 \text{ WLS}$

Preliminary results: timing

$3x3 mm^2 SiPM - 4x4 cm^2 WLS$

$3x12 \text{ mm}^2 \text{ SiPM} - 4x4 \text{ cm}^2 \text{ WLS}$

Timing performance

$3x12 \text{ mm}^2 \text{ SiPM} - 2x2 \text{ cm}^2 \text{ WLS}$

$3x3 mm^2 SiPM - 4x4 cm^2 WLS$

Optical Wireless Communication (OWC)

Alternative to RF for wireless communication offering some advantages:

- "Unlicensed" band
- High data rate (potentially >Gbps)
- Directional (secure communication channel)
- LEDs are everywhere!

Turan et al., 2019, https://doi.org/10.1007/978-3-030-24892-5_8

Why Photo-Trap in OWC?

- LEDs have a large emitting angle \rightarrow Large area and FOV is desired
- High Gain → Single-photon sensitivity → Allows for dimmer sources / Longer links
- Still has the advantages of traditional Pin diodes (compactness, robustness, low voltage operation...)
- Low cost per mm²
- Use of SiPMs in OWC has been explored. Also use of WLS. Never both of them together
- Low PDE ~ 20% (prototype @320-380 nm), but can be compensated with larger area
- Time resolution ~ 2-3 ns. Still good, but may limit maximum data rate
- Low Dark count rate ~2-10 kHz/mm² at ~20 C
- Large sensitive area ~400-1600 mm²
- High background rejection (can be optimized with the proper filter/WLS)