Commissioning of the continuous readout TPC in the ALICE experiment

C. Lippmann for the ALICE collaboration

Frontier Detectors for Frontier Physics 15th Pisa meeting on

advanced detectors

La Biodola • Isola d'Elba • Italy 22 - 28 May, 2022

Introduction (1)

- ALICE is the dedicated heavy-ion experiment at the CERN Large Hadron Collider (LHC)
 - Pb-Pb, p-Pb (and pp) collisions
- Large tracking and PID device in the central barrel: TPC
 - Cylindrical drift volume, 5 m long, 5 m diameter
 - Two sides, split by central drift electrode
 - 18 sectors with readout chambers per side
 - ~100 us electron drift time for max, drift distance

[ALICE TPC Collaboration – JINST 16 – 2021]

Introduction (2)

- ALICE is the dedicated heavy-ion experiment at the CERN Large Hadron Collider (LHC)
 - Pb-Pb, p-Pb (and pp) collisions
- Large tracking and PID device in the central barrel: TPC
 - Cylindrical drift volume, 5 m long, 5 m diameter
 - Two sides, split by central drift electrode
 - 18 sectors with readout chambers per side
 - ~100 us electron drift time for max. drift distance
- The past: MWPC readout until 2018
 - < 2 kHz event readout rate with Pb-Pb collisions</p>
- The future: Continuous readout
 - New requirement: Min. bias readout at increased
 Pb—Pb collision rate (50 kHz)
 - No dead time allowed, no triggering, no gating
 need to minimise ion backflow

[ALICE TPC Collaboration – JINST 16 – 2021]

Readout chambers

Simulated avalanche in a GEM hole

- GEM = Gas Electron Multiplier
- Stacks of 4 GEM foils
- 3 stacks for the large Outer ReadOut Chambers (OROC)
- 1 stack for the smaller Inner ReadOut Chambers (IROC)

4-GEM stacks (1)

Schematic view of pad plane and 4-GEM stack

GEMs 1 and 4: Standard large-area single-mask GEM foils

GEMs 2 and 3: Large-pitch GEM foils

Highly optimized HV settings (see backup slides)

4-GEM stacks (2)

Schematic view of pad plane and 4-GEM stack GEMs 1 and 4: Standard large-area single-mask GEM foils GEMs 2 and 3: Large-pitch GEM foils

Highly optimized HV settings (see backup slides)

Performance with optimised HV configuration

IBF = Ion BackFlow

 σ = energy resolution for 55 Fe

ALICE TPC | PM 2021 | May 27th, 2022 | C. Lippmann | Page 8

HV system

- Cascaded power supply units from CAEN
 - Also good alternative from ISEG available
- Designed for the operation of quadruple-GEM systems
- Shunt resistor in GEM 4 top line for high-definition current measurements (for space charge distortion calibration)
- Pulser input via capacitor in GEM 4 bottom line

Common mode (CM) effect

- Capacitors in HV
 distribution often used
 to reduce CM effect
- But such capacitors would lead to potential problems with discharges
- At high occupancy the CM signals from many tracks will superimpose and lead to a baseline shift
- This baseline shift is measured in the readout system (CRU FPGA) and removed online

Ion tail!

Online ion tail correction also in CRU FPGA

TPC readout electronics

SAMPA ASIC

- 130 nm TSMC CMOS
- 32 channels with preamplifier, shaper,
 10 bit ADC and digital filters
- Continuous or triggered readout
- Front-End Cards (FECs)
 - 5 SAMPA chips per FEC (3276 FECs in total)
 - Continuous sampling at 5 MHz
 - All ADC values read out: 3.3 TB/s total
 - Readout link: CERN GBT / Versatile link system
- FPGA-based readout cards receive the data through 6552 optical links

Noise on one side of TPC

Excellent mean noise: 670 e⁻ @18 pF

Readout system: O²

- O² = Online × offline (the new ALICE data processing cluster)
- 3.5 TB/s continuous raw data flow (all ALICE detectors)
- Continuous data flow is chopped into (sub-)time frames on the FLPs
- Data volume reduction in two steps: On FPGA readout cards and after tracking

TPC upgrade timeline

Start GEM ROC production

Start installation FEE and services

Transportation to LHC P2

Start GEM production

Aug 2016

March 2017

Start GEM ROC installation

May 2019

Nov 2019

Sep 2019

Start connection and commissioning

Aug 2020

Dec 2020

Gain calibration

Krypton gain calibration

- Well known technique for TPCs
- 83Rb (half life 86 days) decays into 83mKr
- Radioactive ^{83m}Kr isotopes decay in TPC volume
- Spectrum for each GEM stack or for each pad
- Stack-by-stack HV adjustment
- Spectrum for each pad → gain calibration (using main peak of spectrum)
- Some remarkable structures
 - foil sagging,
 - wrinkles,
 - GEM hole size distribution

LHC "pilot beams"

- First pp collisions delivered by LHC in Oct 2021
- Commissioning of online data processing including tracking
- Plot shows online quality assurance plot from tracking

With remaining ion back flow still considerable space charge distortions up to few cm

Distortions (1)

With remaining ion back flow still considerable space charge distortions up to few cm

Distortions (2)

- Correction using track interpolation (experience from Runs 1 and 2)
- Calculate average distortion map which is slowly changing with collision rate

Distortions (3)

 With remaining ion back flow still considerable space charge distortions up to few cm

- Correction using track interpolation (experience from Runs 1 and 2)
- Calculate average distortion map which is slowly changing with collision rate
- In addition, fluctuations around the average distortions are important to reach intrinsic TPC resolution
- Fluctuations can be extracted by
 - integrating the ADC values over the ion drift time (Integrated Digital Currents) or by
 - measuring the analog currents at the GEM 4 top electrodes of all GEM stacks

These calibrations are the next big challenge!

Summary

 The upgraded TPC has been reinstalled into the ALICE setup

 Data taking with colliding beams about to start

Next challenge: TPC calibration

Upgrade paper: The upgrade of the ALICE TPC with GEMs and continuous readout (link)

Thank you for your attention!

The past: Triggered TPC operation

Drift time in TPC (100 us), gating grid open Fixed gating grid closure time to absorb all ions in readout chambers

TPC operation in LHC Runs 1 and 2 (2009 – 2018)

Typical Pb-Pb coll. rate: few kHz

time

The future: Continuous operation

TPC operation in LHC Runs 1 and 2 (2009 – 2018) Typical Pb-Pb coll. rate: few kHz

time

TPC operation in LHC Run 3 (from 2022) 50 kHz Pb-Pb coll. rate

IBF suppression (1)

3 effects effectively suppress the backflow of ions into the drift region:

1. low gain in GEM 1, highest gain in GEM 4

Baseline HV settings

$\Delta V_{ m GEM~1}$	=	270 V
$\Delta V_{\rm GEM 2}$	=	230 V
$\Delta V_{\rm GEM 3}$	=	320 V
$\Delta V_{ m GEM 4}$	=	320 V
$E_{ m drift}$	=	$400\mathrm{Vcm^{-1}}$
E_{T1}	=	$3500 V cm^{-1}$
E_{T2}	=	$3500 V cm^{-1}$
E_{T3}	=	$100Vcm^{-1}$
$E_{ m ind}$	=	$3500 V cm^{-1}$

IBF suppression (2)

3 effects effectively suppress the backflow of ions into the drift region:

- 1. low gain in GEM 1, highest gain in GEM 4
- 2. two layers of large pitch (LP) foils (GEM 2 and GEM 3) block ions from GEM 4

Baseline HV settings

		3 -
$\Delta V_{ m GEM 1}$	=	270 V
$\Delta V_{\mathrm{GEM 2}}$	=	230 V
$\Delta V_{\mathrm{GEM 3}}$	=	320 V
$\Delta V_{ m GEM 4}$	=	320 V
$E_{ m drift}$	=	$400Vcm^{-1}$
E_{T1}	=	$3500 V cm^{-1}$
E_{T2}	=	$3500 V cm^{-1}$
E_{T3}	=	$100Vcm^{-1}$
$E_{ m ind}$	=	$3500 V cm^{-1}$

IBF suppression (3)

3 effects effectively suppress the backflow of ions into the drift region:

- 1. low gain in GEM 1, highest gain in GEM 4
- 2. two layers of large pitch (LP) foils (GEM 2 and GEM 3) block ions from GEM 4
- 3. very low transfer field E_{T3} between GEM 3 and GEM 4

Baseline HV settings

		•
$\Delta V_{ m GEM 1}$	=	270 V
$\Delta V_{\mathrm{GEM 2}}$	=	230 V
$\Delta V_{\mathrm{GEM 3}}$	=	320 V
$\Delta V_{ m GEM4}$	=	320 V
$E_{ m drift}$	=	$400\mathrm{Vcm^{-1}}$
E_{T1}	=	$3500 V cm^{-1}$
E_{T2}	=	$3500\mathrm{Vcm^{-1}}$
E_{T3}	=	$100\mathrm{Vcm^{-1}}$
$E_{ m ind}$	=	$3500 \mathrm{V cm^{-1}}$

Ion tail for central pads only Signal normalized to charge under peak 0.005 0.004 Eind=95.00 Eind=100.00 0.003 0.002 0.001 -0.00160 80 120 100 Time (200 ns)

Measurement: Ion tail at different induction fields

Ion tail studies

Simulation: Ion production points vs. end-of-drift time (absorption of ions at GEM4 top)