

30ps precision timing calorimetry with the CMS High Granularity Calorimeter

on behalf of the CMS collaboration Thorben Quast (CERN)

25th May 2022

The medium-term future at CERN: High Luminosity LHC

Experimental testing of the Standard Model of Particle Physics via high-energy particle collisions: Large Hadron Collider (LHC) @ CERN.

Thorben Quast | Pisa Meeting 2022, 25 May 2022

LHC upgrade to >5x design luminosity = **HL-LHC**

HL-LHC necessitates upgrades to the CMS detector

Experimental challenges	<u>LHC</u>	HL-LHC	General mitigation strategy
 inst. luminosity detector irradiation pile-up interactions 	2 x 10 ³⁴ s ⁻¹ cm ⁻² O(10 ¹⁴ neq/cm ²) O(40)	up to 7.5 x 10 ³⁴ s ⁻¹ cm ⁻² >O(10 ¹⁵ neq/cm ²) 140-200	 improved trigger & computing radiation-tolerant sensors & electronics timing and increased granularity

Compact Muon Solenoid (CMS) HL-LHC Upgrades <u>Tracker:</u> Radiation tolerant, high granularity, less materials, tracks in hardware trigger (L1), coverage up to $|\eta| = 3.8$

Barrel Calorimeter: New BE/FE electronics, ECAL: lower temp., HCAL: partially new scintillator

other:

- HLT up to 7.5kHz
- MIP timing detector
- Beam radiation instr.
 and luminosity

New calorimeter endcap: High-Granularity Calorimeter (HGCAL)

HGCAL = Sampling calorimeter

 Hexagonal silicon sensor based modules in CE-E and high radiation regions of CE-H.

	Both endcaps		<u>Silic</u>	<u>on</u>	Scintillator		
	Area		~620m²		~370m ²		
	#Modules		~260	00	~3700		
	Channel size		0.5 - 1.2 cm ²		4-30 cm ²		
	#Channels		~6 M		~240k		
	Op. temp.		-30 ° C		-30 ° C		
Passive ial	Per endcap	CE	-Е	CE-H (Si)	CE-H	
	Absorber P	b, Cu	CuW, Cu		Stainless steel, Cu		
	Depth	27.7	Χ0		8.5 λ		
	Layers		26			14	
	Weight		~	215 t / e	ndcap		

Idea: HGCAL will be a 3D imaging calorimeter

Simulated VBF H (yy) signatures in the granular endcap calorimeter

LHC —> HL-LHC: Much more pile-up in the CMS detector

Thorben Quast | Pisa Meeting 2022, 25 May 2022

"Ultimate" 7.5E34 cm⁻²s⁻¹ luminosity

Increasing pile-up

• 140 - 200 collisions per bunch crossing >> 3-5x larger than in Run 2.

Pile-up tends to hide the signal-of-interest

Thorben Quast | Pisa Meeting 2022, 25 May 2022

+ 200 PU 10² ÷ 10 VBF jet 10

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities

O(10ps) timing capabilities helpful

- Can expect timing resolution for silicon-based shower detections around a few 10 ps per channel.
- Extensive (however slightly outdated) simulation studies performed in the HGCAL technical design report.

Realisation of such a timing resolution is not trivial

Precision timing in such a complex, high granularity system is a great challenge for the electronics system:

Thorben Quast | Pisa Meeting 2022, 25 May 2022

10

Prototype ASIC: SKIROC2-cms with Time-of-Arrival (TOA) test block

- TOA from fast shaper followed by discriminator and Timeto-Amplitude converter (TAC = TDC)
- TAC based on voltage ramp stopped at clock edge (rising, falling)
 - Ramp saturation causes non-linearity in the response
- TOA resolution measured to reach **50 ps** with single chip (2017 JINST 12 C02019)

Several HGCAL beam tests performed @ CERN SPS in 2018

- e.g. <u>2021 JINST 16 T04001</u>, <u>2021 JINST 16 T04002</u>, <u>arXiv:2111.06855</u>
- One of the goals: validate the timing performance of a prototype

Reference timing device: MCP-PMT with less than 30ps contribution to the measured timing resolution.

TOA calibration & reconstruction strategy

Three-step calibration procedure

116 readout channels could be time-calibrated

October 2018 (config 1)

.

Demonstrated in test beam: **Resolve time evolution of real particle showers!**

250 GeV/c *e*⁺: 0.0-0.4 ns

Thorben Quast | Pisa Meeting 2022, 25 May 2022

250 GeV/c *e*⁺: 0.4-0.8 ns

250 GeV/c e⁺: 0.8-1.2 ns

Per-channel timing resolution well below 100ps

Expect ~50ps asymptotic timing resolution, dominated by Skiroc2-cms performance.

- Intrinsic MCP resolution already subtracted
- **σ**_{MCP}(800 MIP) ~ **70ps**

Thorben Quast | Pisa Meeting 2022, 25 May 2022

- Timestamp from channels on same module correlated
- $\hat{\sigma}_{ch}(800 \text{ MIP}) \sim 80 \text{ ps}$
- Per-channel resolution of $80ps/\sqrt{2} \sim 55ps$

15

Global jitter between HGC prototype and reference time

- Hit timestamps within one shower consistent w.r.t. each other
- Common shift w.r.t. the reference MCP
- Indication of a global jitter between the HGC prototype and the reference MCP + clock copy system
- Origin of this jitter is specific to the test beam setup

- Shower timestamp = energy-weighted sum of hit timestamps
- Blue: Shower timestamp w.r.t. MCP = ~56ps
- Red: shower timestamp from half the layers w.r.t. each other = 2xshower timestamp of full HGC prototype = ~36ps
- Assume uncorrelated global jitter: ~50ps (independent on beam energy)

Shower timestamp: Resolution below 20ps & about 10ps bias

Shower timestamp = energy-weighted sum of hit timestamps, TOF-subtracted from each hit time

Good agreement for all energies, between intrinsic HGC and HGC vs. MCP resolution after subtracting the global jitter.

• Good: MC reproduces data.

→ Asymptotic resolution of less than 20 ps in tested range!

Thorben Quast | Pisa Meeting 2022, 25 May 2022

Bias of 10ps or less for EM shower energies above 50GeV.

17

MS

Next: Ultimate ASIC will be the HGCROC

- HGCROC features a Time-of-Arrival block based on a constant-threshold discriminator and a 3-stage TDC:
 - Gray counter on 160 MHz PLL ► Using 2 bits, LSB = **6.25 ns**
 - Coarse TDC (LSB = **195 ps**) ► classical DLL with start/stop signals
 - Fine TDC (LSB = **24.4 ps**) ► residue integrator based on a DLL line
- Architectural advantages: •

٠

- High-speed conversion and low power consumption
- Large time range due to global counter ►
- Keeps performance under temp. and process variations ►

Timing performance of the final HGCROC version

 Significant improvements during the prototyping 	2
of the HGCROC ASIC from v1 to v3.	2
 Minimum threshold is now set to 15 fC (~5 MIPs 	toa [ns]
in 300µm 51).	0
	0
 Extremely promising results: 	12
The measured jitter floor is about	10
13 ps	[bs]
which is about 3x better than the	itter
SKIROC2-cms.	toa j

Summary - not a conclusion

HGCAL: where highly granular calorimetry comes to life at the energy frontier

- Silicon as sensitive material in high radiation region, scintillator+SiPMs elsewhere.
- 4D energy measurement of particle showers.

O(10ps) timing resolution targeted

- Integral for suppression of pile-up signatures, but non-trivial to achieve.
- 20 ps timing resolution + 10 ps bias for EM showers demonstrated in test beam experiment with prototype ASIC.
- Final ASIC should have x3 better timing resolution. Tests with final modules and full electronics chain coming.

Thorben Quast | Pisa Meeting 2022, 25 May 2022

Backup

CERN

HGCAL 2018 prototype module construction

(a)

HGCAL 2018 test beams

March 2018 @DESY II (T21)

1 + 2 HGCAL modules:

1 module: mounted on moving stage

1.6 - 6 GeV/c e-

silicon module design qualification

DATURA beam telescope

DESY II DATURA arm 1 **DATURA** arm downstream "calo-stack" central module under test moving

Thorben Quast | Pisa Meeting 2022, 25 May 2022

Setup

Particles

Goal

Aux. detectors delay wire chambers (DWC), microchannel plates, threshold Cherenkov detectors

October 2018 @CERN SPS (H2)

94 HGCAL modules: 28-layer EE setup + 12-layer FH setup

e⁺, μ⁻, π⁻ up to 300 GeV/c

full in-situ calibration, performance+comparison to simulation

23

Clock path

Intrinsic MCP timing resolution is ~25ps

Thorben Quast | Pisa Meeting 2022, 25 May 2022

CERN

Timestamp correlation between channels on the same module

Thorben Quast | Pisa Meeting 2022, 25 May 2022

CERN

Shower timing resolution dominated by high-energy hits

Shower timestamp = energy-weighted sum of hit timestamps, TOF-subtracted from each hit time

