

High bAndwidth coMmercial digitizer for hostile EnvironmenT (HAMLET)

E. Pedreschi, R. Ciolini, S. Donati, V. Giusti, L. Morescalchi, D. Pasciuto, F. Spinella, A. Taffara **INFN Pisa**

HAMLET: the IDEA

«Development of a fast, high resolution data acquisition system, qualified for hostile environments and easily interfaced with a wide range of sensors»

- We started from the project of the 20-channel digitizer developed as part of the electromagnetic calorimeter project of the Mu2e experiment at Fermilab:
 - Mu2e has developed a fast digitizer qualified for use in extreme environments (vacuum, magnetic field, ionizing and non-ionizing radiation)
 - > The project and the qualification tests required a significant commitment in terms of human and economic resources by the INFN
- We did not find commercial analogues
- There was interest in this device in fields other than high energy physics (nuclear, space, medical and industrial)

HAMLET: the PROJECT

- Development of a 20-channel digitizer based entirely on commercial components and easily interfaced to different types of signals
- A demonstrator based on an array of SiPMs coupled to a scintillating crystal and connected to the digitizer was developed.

The DIGITIZER - Specs

Specification:

- 20 channels
- 12 bit @250Msample/s
- Fully differential inputs
- Qualified for hostile environments
- 4 interfaces:
 - optical fiber (up to 10 Gbit)

 - Gigabit Ethernet
 - Can Bus

Qualification levels:

- $TID \rightarrow 30 \ krad$
- neutrons → 10¹¹ n/cm² @1
- MeV_{eq} (Si)/y
- $B \rightarrow 1 T$
- Vacuum→ 10⁻⁴ Torr

Qualification tests

Test campaigns carried out:

- Total Ionizing Dose (TID)
 - > gELBE@HZDR
 - Calliope@ENEA
 - Magnetic field (B)
- > LASA@INFN Milano
- Neutrons:
 - FNG@ENEA

Total Ionizing Dose

- Test of the board up to 30 krad
- Special care for the optical transceiver (need to replace VTRx custom CERN part)
- Tested several 850 nm commercial transceiver
- Selected AVAGO Technologies AFBR-709SMZ: tested up to 230 krad
 - ➤ Bit Error Rate (BER) after 20 h of flux @ 12krad/h
 - ➤ BER < 10e-15

AVAGO Technologies AFBR-709SMZ

Neutron test

3 days test @FNG (14Mev n)

- Tested up to 1.6x10¹¹ n/cm² 1 Mev eq
 - > No evidence of permanent damage
- Optical transceiver AFBR- 709SMZ tested up to 10¹²n/cm² 1 Mev eq
 - ➤ No SEU, no evidence of damage

Proof of concept

Crystal based detector

- Crystal: CsI→ rad hard, 34*34*200 mm³
- Front End: Chip Music $\rightarrow \sum$, shaping, amplification
- SiPM Array → 8 SiPM BROADCOM® 6*6 mm²
- Standard USB-C connection

Test with cosmic

Cosmic data from the complete system (one CsI crystal)

Digitazed pulse from music

Conclusions

- A fast, high resolution data acquisition system has been developed with entirely commercial components, qualified for hostile environments and easily interfaced with a wide range of sensors
- As an example of application, a demonstrator based on an array of SiPMs coupled to a scintillating crystal and connected to the digitizer was developed.