Mu2e calorimeter readout electronics
F. Spinella for the Mu2e Calorimeter group
INFN - Pisa

1. Mu2e: Search for $\mu + N \rightarrow e + N$

Mu2e will search for the coherent, neutrinoless muon-to-electron conversion in the field of a nucleus. This charged lepton flavor violating process allows to probe energy scales up to thousands TeV, far above the existing colliders. If no conversion events are observed in 3 years of running, Mu2e will set a limit on the ratio between the muon conversion and the muon capture rate, $R_{\mu e} < 10^{-14}$ (μ 90% C.L.).

- Production Scolenoid (PS)
 - A time projection chamber of tangential layout
 - A graded magnetic field reflects muons to the TS
 - 4.7 T

- Cosmic Ray veto (CRV)
 - Veto of large cosmic ray flux
 - Covers the entire Mu2e and half of the TS
 - 2.5 T

- Straw Tracker (TRK)
 - 20000 straw tubes for WP and Mu2e
 - Momentum resolution 500 MeV/Br (16% RMS)
 - 2.0 T

- Electromagnetic Calorimeter (ECAL)
 - 2MM undoped CsI crystals
 - Energy, Time and Position measurements
 - 1.0 T

- Detector Scolenoid (DS)
 - Captures muons on the Aluminum chopping target
 - 1 T field and 35% bar vacuum in the detector bore
 - 0.5 T

2. The Electromagnetic Calorimeter

- Calorimeter Provides:
 - Particle identification π/E
 - Seed for track pattern recognition
 - Independent trigger

- $E_p/E_\gamma < 10%$ and $\Delta E < 500$ ps
- Position resolution of 0.1 cm

- High granularity made of 3448 undoped CsI crystals ($3.43 \times 20 \times 20$ cm3)
- Crystals arranged in two disks (inner/outer radius: 37.4 cm/66 cm, separation between disks 75 cm)
- 1 crystal coupled to 2 large (14x20 mm2) area UV-extended SiPM > 2686 electronic channels
- SiPM packed in a parallel arrangement of 2 groups of 3 cells biased in series
- DAQ crate located inside the cryostat to limit the number of pass-through connections
- 10 crates/disk with 6/8 boards/crate

3. Why a digitizer? What requirements?

- Requirements:
 - Very intense particle flux expected in the calorimeter \rightarrow High Sampling Rate digitizer
 - Crucial to resolve pile-up
 - Sample SiPM signal at the frequency of 200 Msamples with 12 bits ADC

- System located inside the cryostat \rightarrow Harsh Environment:
 - Magnetic field of 1 T and 3.0 T torr vacuum
 - Total ionizing Dose (TID):
 - 0.5 krad$/yr$ for 12 \pm 5 years
 - TID requirements of 80 krad
 - Neutron flux 5×10^{13}/1 MeV (Si)/cm2/s (from simulation)
 - Mechanical constraints:
 - Limited space \rightarrow 20 ADC channels/boards
 - Limited access for maintenance \rightarrow Highly Reliable Design mandatory

4. Front End Electronics and readout flow

- FE Boards (FEB) connected to SiPM provide:
 - Amplification
 - Local linear regulation of the bias voltage
 - Monitoring of current and temperature
 - 2969 FEB boards produced \rightarrow 900 years
 - 20 FEB controlled by 1 Mezzanine Board (MB)
 - Differential signals from 20 FEB sent to MB and then to 1 DRAC
 - DRAC \rightarrow sampling, processing and transmission to the Mu2e DAQ

- FE requirements:
 - Magnetic field of 1 T and 103 Torr vacuum
 - Total ionizing Dose (TID):
 - 1.8 krad$/yr$ x 12 SFR\pm5 years
 - TID requirement of 100 krad
 - Neutron flux 5×10^{13}/1 MeV (Si)

5. Digitizer architecture and design

- After an intense campaign of tests:
 - ADQ: ADS4229 (Texas Instruments*)
 - FPGA: Xilinx Virtex 300 (Micron*)
 - DC-DC: LIN15000G
 - LOO: MC35052 (Texas Instruments*)
 - Optical Transceiver: CERN VITRIX

- DIRAC PCB specs:
 - Material: FR4@0.8
 - Layers: 32
 - Dimensions: 233x205 mm
 - Thickness: 2.127 mm
 - Differential lines: 500 Ω
 - Signal ended lines: 50 Ω

6. Digitizer architecture and design

- TDAQ sends an heartbeat packet that contains EVENT TAG and EVENT WINDOWS
- DRAC builds the calo hit applying a zero suppression and pre-processing data
- Data stored in DEB
 - Tag sends a specific EVENT TAG, and DRAC retrieve requested Data Packet from DQR and sends it out to DTC

7. DIRAC Qualification Campaign

- 1. Comparison with commercial digitizer showed no differences in performances
- 2. Obtained time resolution in accordance with expectations
- 3. Noise level and dynamic scale as expected

8. Vertical slice test

- Large scale EMC prototype:
 - 51 CsI crystals
 - 102 Mu2e SiPMs
 - 102 FEE boards
 - 1 DRAC board handles 20 channels
 - Mechanics and cooling system are similar to the final ones

This work was supported by the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No.681169, 734550, 822195, 858189 and 101030460