

# The JUNO large PMT readout electronics









- <sup>a</sup> Department of Physics and Astronomy, University of Padua and INFN, 35131 Padua, Italy
- \* Correspondence: <u>andrea.serafini@infn.it</u>

15<sup>th</sup> Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, May 22-28, 2022





## The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino medium baseline experiment with an expected

unprecedented energy resolution of 3% at 1 MeV, under construction in China [1, 2].



## Extensive **neutrino physics** and astrophysics program:

- Reactor  $\overline{\nu}_e$ : 60 IBD/day
- Supernovae burst: 5000 IBD + 2300 ES in 10 s (@ 10 kpc)
- DSNB: 2-4 IBD/yr
- Solar v:  $O(10^3)/yr$
- Atmospheric ν: O(10²)/yr • Geo-ν: ~400/yr

### Main physics goals:

- neutrino mass hierarchy determination @  $3\sigma$  in 6yr
- measurement of three oscillation parameters with sub-percent precision

## **Central detector (CD):**

20 kton liquid scintillator inside an acrylic vessel ( $\varnothing$  35.4 m), supported by a stainless-steel latticed shell

#### **CD PMT system:** 17612 20" Large-PMTs 25600 3" Small-PMTs

photocoverage > 75%



## Large-PMT readout electronics



#### **Total components:**

- 7 RMUs • 20012 L-PMTs
- 6670 GCUs • 1 CTU
- 138 BECs

3 PMTs connected to 1 UWBox; 48 GCUs connected to 1 BEC via the synchronous link and to 1 switch via the asynchronous link.

Main tasks: digital conversion of the analog signals from the PMTs, local trigger generation, charge reconstruction, timestamp tagging, temporary storage in local FPGA memory, data transfer to DAQ.

#### **Electronics specifications** [1,3]

- Waveform sampling: 1 GS/s
- Reliability: 0.5 % failure rate over 6 yr
- Wide dynamic range: 1-1000 pe Acquisition rate up to 10 kHz
- System synchronization: 8 ns clock



## Mass testing of the Large-PMT readout electronics at Kunshan production site

#### **Integration tests in Kunshan, China**:

simultaneous mass testing of 344 GCUs at production site. Each day 60 GCUs are exchanged.

#### Waveform digitization:

304ns-waveform generated by the integrated calibration circuit. Waveform length and position of waveform can be changed online via IPbus protocol [4].

## **Bandwidth measurement:**

external pulser at 1-100 kHz frequency, data acquisition from 3 channels of 1 GCU, fixed packet size 1 evt = 5.12 kb. Efficiency measurement (acquired/expected events).





## Low gain ADC 0.10 response time [ms] <u>월</u> 250 E saturation regime for charge 002 the high gain ADC Output 150 0.02 1500 GCU number [#] Input charge [pC] 3952 4330 4946 [°C] 6629 02-25 20 02-25 21 02-25 22 02-25 23 02-26 00 Entries [# / 0.2 ADC] Time [h] Time [mm-dd HH]

#### **Test protocol:**

- 1. Ping test: to check performances of connection of the GCU to the network; send 100 56-byte packets in 1 second to each GCU.
- Linearity test: calibration of each channel, evaluate gain for High gain and Low gain ADCs; short runs at various test pulse amplitude.
- Stability test: check stability of parameter over time: baseline, baseline sigma, integrated charge; long run at fixed test pulse amplitude.
- Slow control monitoring:
  - FPGA temperature
- PMT high voltage
- HVU temperature
- internal voltages and currents

quantities are read through the asynchronous link via IPbus protocol [4].

**DDR3:** check storage capabilities and event loss rate.

#### **References:**

[1] JUNO Collaboration, JUNO Physics and Detector, 2021, arXiv:2104.02565

- [2] JUNO Collaboration, Neutrino Physics with JUNO, J. Phys. G43, 3, 2016
- [3] JUNO Collaboration, JUNO CDR, 2015
- [4] C. Ghabrous Larrea et al., IPbus: a flexible Ethernet-based control system for xTCA hardware, JINST 10 (2015) no.02, C02019