Improved muon decay simulation with Geant4 and McMule (A. Gurgone et al.)

- The MEG II experiment searches for $\mu^+ \to e^+ \gamma$ with a sensitivity of $6 \cdot 10^{-14}$.
- The physics programme can be extended with the search for axion-like particles in muon decays: $\mu^+ \to \mathrm{e}^+ X$, $\mu^+ \to \mathrm{e}^+ X \gamma$ or $\mu^+ \to \mathrm{e}^+ (X \to \gamma \gamma)$.
- The only signature of $\mu^+ \to e^+ X$ is a monochromatic positron close to the kinematic endpoint of the $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ background ($E_e \simeq 52.83$ MeV).
 - \hookrightarrow The hunt for such an elusive signal requires exhaustive MC simulations.
- Implementation of a new positron event generator based on McMule, a framework for the computation of radiative corrections for low-energy processes with leptons.
 - $\hookrightarrow \mu^+ \to e^+ X$ at NLO and $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ at NNLO + NLL.
 - \hookrightarrow Best theory error on the positron energy spectrum achieved so far.
- Simulation of event reconstruction with the MEG II positron spectrometer.
- Feasibility study of searching for $\mu^+ \to e^+ X$ for different masses ad couplings. \hookrightarrow Preliminary results show a **competitive sensitivity** around $10^{-5} \div 10^{-6}$.
- The new event generator is fundamental to improve the sensitivity at the endpoint, where the higher-order corrections are enhanced by the emission of soft photons.
- A rigorous control of the systematic effects on the positron energy reconstruction is required to avoid signal biases → New calibration tools in development.

