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Approach: Surrogate generative models is a powerful tool which allows 31 i oA
significantly speed up and/or improve quality of the simulation for HEP TR R B L
experiments | Geant | 030, Geant | o gf ~ Geant
- LHCDb aims to have full detector simulation using parametric model
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Question: How can we enforce generative model to learn specific physics
To which extend we can re-use RICH PID trained model for data requirements with higher priority?
samples with different distribution in physics phase space?

Answer: Auxiliary surrogates to fine tune specific metrics

Answer: Generative Model Transfer ek AUX Regressor )
Train GAN for RICH based particle ID on specific calibration ol
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To which extend the trained model is good for different data srom /
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Test GAN on different sample
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