A %{2’ DETECTOR DESCRIPTION USING NEURAL NETWORK DRIVEN SIMULATION

Context

Problem: Simulation takes the major part of computer resources for HEP
experiments

- deficiency of resources, need ways to speed up simulation production

« in LHCb: 50% of SIMU resources are taken by RICH, 35% by calorimetry

Approach: Surrogate generative models is a powerful tool which allows
significantly speed up and/or improve quality of the simulation for HEP
experiments

« LHCb aims to have full detector simulation using parametric model

* in this presentation: tuning GAN models for RICH and ECAL
simulations

Fast Simulation of LHCb High Level Objects (Lamarr)

HepMC particles
from generator

LamarrPropagator
All propagation of par-
ticles, high level objects

S

LamarrCaloProto
Cluster calorimeter de-
posits, including spillover

/

LamarrRecoSummary
Fill other event level
info (nTracks...)

LamarrParticlelD
Compute PID using GAN

* no GEANT4, mostly parametric
« produces high level physics objects (tracks, clusters, ...)

« derive RICH-based particle ID characteristics for tracks :
- directly from track kinematics (bypassing RICH simulation completely)
* by using stochastic generative models, GANs
- train GAN models on detector particle ID calibration samples

Realistic Simulation of the RICH-based Particle
Identification

« train generation model (GAN) on collected calibration samples to predict
RICH-based particle ID responses

cle ID characteristics are
reproduced reasonably well
+ particle ID cuts provides consistent
efficiencies for GANs and training
calibration samples

+ for the same physics process

Question:

To which extend we can re-use trained
model to data samples with different
distribution in physics phase space?
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Answer: Generative Model Transfer

« Train GAN for RICH based particle ID on specific calibration samples
+ To which extend the trained model is good for different data samples?
Exercise:
« Train GAN for RICH based particle ID variables on muon sampl =]
B = Jly(utp)X, B* = Jly(utpu )K" =3
+ Test GAN on different sample
- BT > K™*utu~
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Obtained consistent efficiency: GAN successfully extends to a different
physics sample
+ generative model transfer is robust and may be used for physics analyses

Muon system

Collision
point

Hadron
Calorimeter

Tracker

Fast Simulation of the ECAL Response

train GAN to generate 30 X 30 response matrix for particles of
different energies, directions and position (5 — 900 GAN)

incorporate model into LHCb GEANT4 stack (Gauss)
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+ some physics distributions are good enough, some are not at all.

* no generative model is ideal. General training procedure is agnostic to
underlying physics.
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+ however, from the physics perspective, we have specific requirements to

the model quality.

Question:

How can we enforce generative model to learn specific physics requirements
with higher priority?

Answer: Fine Tune Specific Metrics

- If the target metric is differentiable, may include it directly in the loss

« If the target metric is more complicated and can not be expressed as a
computational graph:

construct auxiliary surrogate regressor to evaluate target metric for
generated object

consider surrogate metric as an object feature

train generative model with emphasis on the target feature and the
target regressor simultaneously

the

lllustration: statistic improvement for the non-differentiable property, transverse

asymmetry of the ECAL cluster

( No AUX Regressor )
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