A KREAN DETECTOR DESCRIPTION USING NEURAL NETWORK DRIVEN SIMULATION

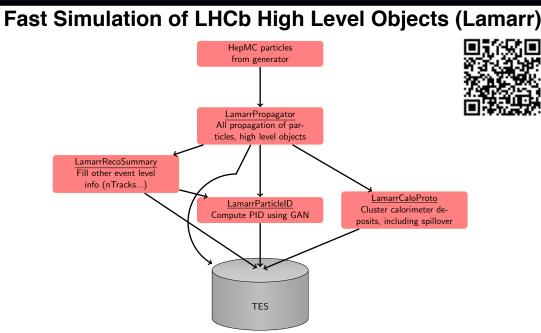
Context

Problem: Simulation takes the major part of computer resources for HEP experiments

- · deficiency of resources, need ways to speed up simulation production
- in LHCb: 50% of SIMU resources are taken by RICH, 35% by calorimetry

Approach: Surrogate generative models is a powerful tool which allows significantly speed up and/or improve quality of the simulation for HEP experiments

- LHCb aims to have full detector simulation using parametric model
 - in this presentation: tuning GAN models for RICH and ECAL simulations



no GEANT4, mostly parametric

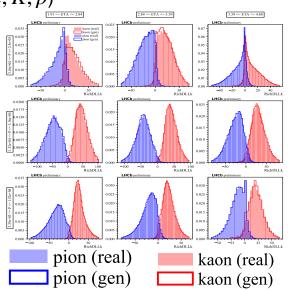
- produces high level physics objects (tracks, clusters, ...)
- derive RICH-based particle ID characteristics for tracks :
 - directly from track kinematics (bypassing RICH simulation completely)
 - by using stochastic generative models, GANs
 - train GAN models on detector particle ID calibration samples

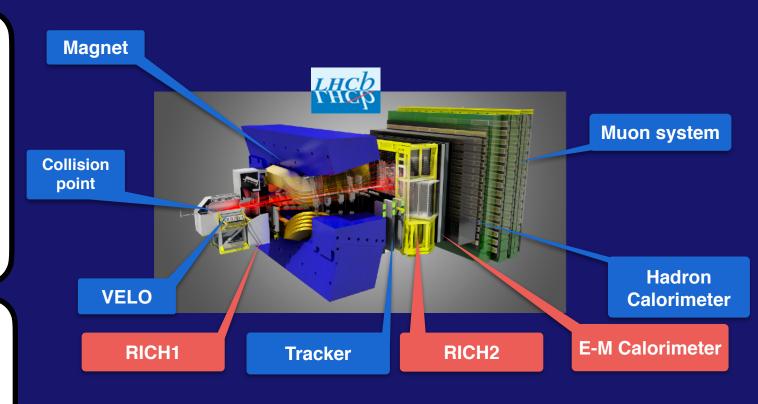
Realistic Simulation of the RICH-based Particle Identification

- train generation model (GAN) on collected calibration samples to predict RICH-based particle ID responses
- for generation-level particles of different types and kinematics

• (five $3 \rightarrow 5$ GANs for e, μ, π, K, p)

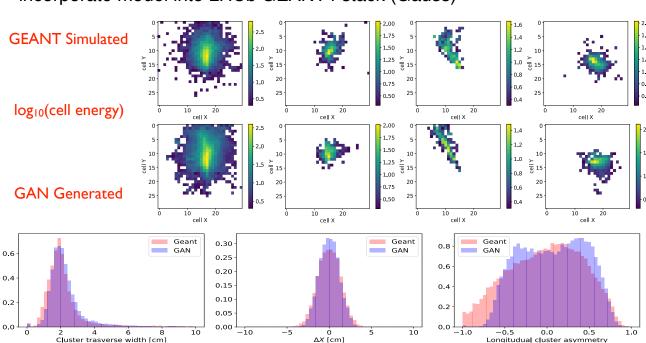
Particle ID characteristics are reproduced reasonably well





Fast Simulation of the ECAL Response

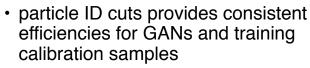
train GAN to generate 30 × 30 response matrix for particles of different energies, directions and position (5 → 900 GAN)
incorporate model into LHCb GEANT4 stack (Gauss)



- some physics distributions are good enough, some are not at all.
- no generative model is ideal. General training procedure is agnostic to underlying physics.
 - however, from the physics perspective, we have specific requirements to the model quality.

Question:

How can we enforce generative model to learn specific physics requirements



for the same physics process

Question:

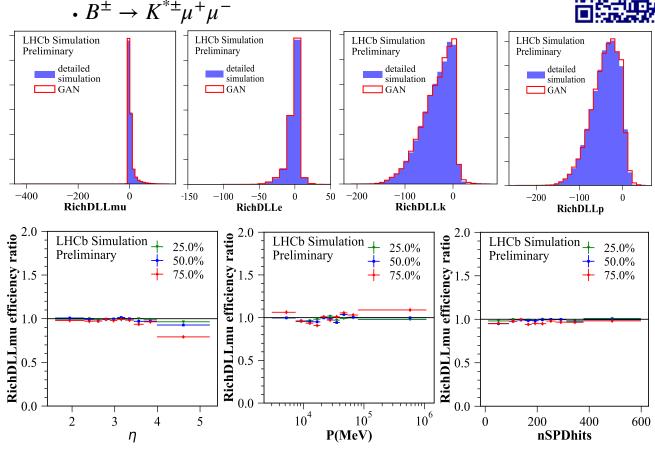
To which extend we can re-use trained model to data samples with different distribution in physics phase space?

Answer: Generative Model Transfer

- Train GAN for RICH based particle ID on specific calibration samples
- To which extend the trained model is good for different data samples?

Exercise:

- Train GAN for RICH based particle ID variables on muon sample $B \rightarrow J/\psi(\mu^+\mu^-)X, B^{\pm} \rightarrow J/\psi(\mu^+\mu^-)K^{\pm}$
- Test GAN on different sample \mathcal{P}^{\pm} ... $\mathcal{V}^{*\pm}$... \mathcal{V}^{\pm}



Obtained consistent efficiency: GAN successfully extends to a different physics sample

generative model transfer is robust and may be used for physics analyses

with higher priority?

Answer: Fine Tune Specific Metrics

- If the target metric is differentiable, may include it directly in the loss
- If the target metric is more complicated and can not be expressed as a computational graph:
 - construct auxiliary surrogate regressor to evaluate target metric for the generated object
 - · consider surrogate metric as an object feature
 - train generative model with emphasis on the target feature and the target regressor simultaneously

Illustration: statistic improvement for the non-differentiable property, transverse asymmetry of the ECAL cluster

