Negative Capacitance Ferroelectric Devices 15 D for Radiation Detection Applications

<u>A. Morozzi</u>^{*} on behalf of the NegHEP Collaboration

INFN of Perugia, via Pascoli 1, 06123 Perugia, Italy.

The NegHEP Project

- ✓ The INFN-CSN5 NegHEP (NEGative capacitance field effect transistors for the future High Energy Physics applications) project proposes the use of innovative **Negative Capacitance** (NC) devices in particle detection systems for the next generation High Energy Physics (HEP) experiments at future colliders, featuring self-amplified, segmented, high granularity sensors.
- A negative capacitor in the gate stack of a FET can provide a step-up voltage, which can potentially overcome the fundamental limit in the subthreshold swing (SS < 60mV/dec), fostering the design of a single-transistor amplificator.
- \checkmark The NC features of doped HfO₂ in NC-FET [1] is explored with advanced TCAD (Technology Computer Aided Design) modeling.
- ✓ An X-ray irradiation and characterization campaign has been set to assess the NC-FET radiation hardness.

NC Working principle

- \checkmark Ferroelectrics materials show a polarization P_s even when E_F is not applied.
- \checkmark In equilibrium, the ferroelectric material resides in one of the wells.

(a) Ferroelectric free energy vs polarization landscape at the zero electric field ($E_f = 0$).

* arianna.morozzi@pg.infn.it

 $-E_{f}$ (b) Polarization vs E_{f} dependence derived from (a). For low P_s , the relative permittivity ε_f is

 \checkmark P_s can be reversed by the application of an external E_f larger than E_c .

 E_f Electric Field, E_c coercive field, P_s spontaneous polarization.

negative. The state of negative permittivity is thermodynamically unstable [2].

TCAD modeling of MFIM structures

- Development of **ad-hoc material libraries** to describe the properties of the ferroelectric material HZO not included within the TCAD environment [3].
- Ginzburg-Landau-Khalatnikov (GLK) equation. The charge-boost NC phenomenon only takes place after proper capacitance matching between dielectric and ferroelectric materials [4].
- Pulsed Charge-Voltage (Q-V) measurements are necessary to access the ferroelectric NC region during switching by preventing charge injection.

1etal-Ferroelectric-Insulator-Metal Measured [5] and simulated Polarization-E_F curves for a MFIM structure 4 nm Al_2O_3 over HZO 7.7 and 11.3 nm. E_F is across the FE material. The **NC region** corresponds to the **negative slope** of the S-shaped Landau P-E curve.

Radiation Damage Effects

The overall Q_{int} can be accounted for as the sum of charge already present before irradiation $Q_{int}(0)$ and an additional positive fixed charge $\Delta Q_{int}(\phi)$ at the HZO/Al₂O₃ interface of increasing values, aiming at mimic increasing X-ray doses (ϕ).

- ✓ Ultra-thin HfO₂-based n-**NC-FETs** featuring channel different W/L characteristics. The gate length (L) ranges from 70 to 150 nm, while the width (W) is 0.25, 0.5, 1 and 5 µm.
- \checkmark I_{ds}-V_{as} transfer characteristics for different W/L options.
- \checkmark X-ray irradiation campaign at INFN Genova up to 5 Mrad.
- ✓ Method proposed by McWhorter: the effects of oxide charge and interface traps can disentangled from be the subthreshold-current curve of a MOSFET in saturation [6].

Simulated P-E curves for a MFIM stack (4 nm Al_2O_3 over HZO 7.7 nm). Surface damage effects induced by X-rays have been accounted for with the parameter $\Delta Q_{int}(\phi)$ in the overall fixed oxide formula:

 $Q_{int}(\phi) = Q_{int}(0) + \Delta Q_{int}(\phi).$

Conclusions

- ✓ Use of the TCAD modeling approach as a predictive tool to optimize the design and the operation of the new generation NC-FET devices for the future HEP in the HL-LHC scenario.
- ✓ The analysis and results obtained for MFIM capacitors can be straightforwardly extended to the study of NC-FETs.
- ✓ Irradiation and measurements campaign ongoing at INFN Genova and Perugia.
- ✓ In-depth investigation of radiation damage effects induced by irradiation on innovative NC-FETs.

References

- 1. S. Salahuddin and S. Datta, Nano Letters, vol. 8, no. 2, 2008, pp. 405-410.
- 2. M. Hoffmann et al., APL Mater. 9, 020902 (2021).
- 3. A. Morozzi et al 2022 JINST 17 C01048.
- 4. H.Agarwaletal., IEEEElectronDeviceLetters, vol. 40, no. 3, pp. 463-466, 2019
- 5. M. Hoffmann et al., 2018 IEEE International Electron Devices Meeting IEDM, 18-727 (2018).
- 6. McWhorter PJ, Winokur PS, Appl Phys Lett (1986) 48:133. doi:10.1063/1.96974.