$\int_{E_v}^{\bullet} \mathbf{BRAND} - \mathbf{A}$ detection system for β -decay correlation measurements

K. Dhanmeher², K. Bodek¹, J. Choi⁵, L. De Keukeleere³, M. Engler⁶, G. Gupta¹,
A. Kozela², K. Łojek¹, K. Pysz², D. Ries⁶, A. R. Young⁵, D. Rozpędzik¹,
N. Severijns³, T. Soldner⁴, N. Yazdandoost⁶, J. Zejma¹

karishma.dhanmeher@ifj.edu.pl

M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
 H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
 Institute of Nuclear and Radiation Physics, KU Leuven, Belgium

4) Institut Laue-Langevin, Grenoble, France

5) Dep. of Physics and Astronomy, North Carolina State University, Raleigh, USA

6) Dep. of chemistry TRIGA site, J. Gutenberg University, Mainz, Germany

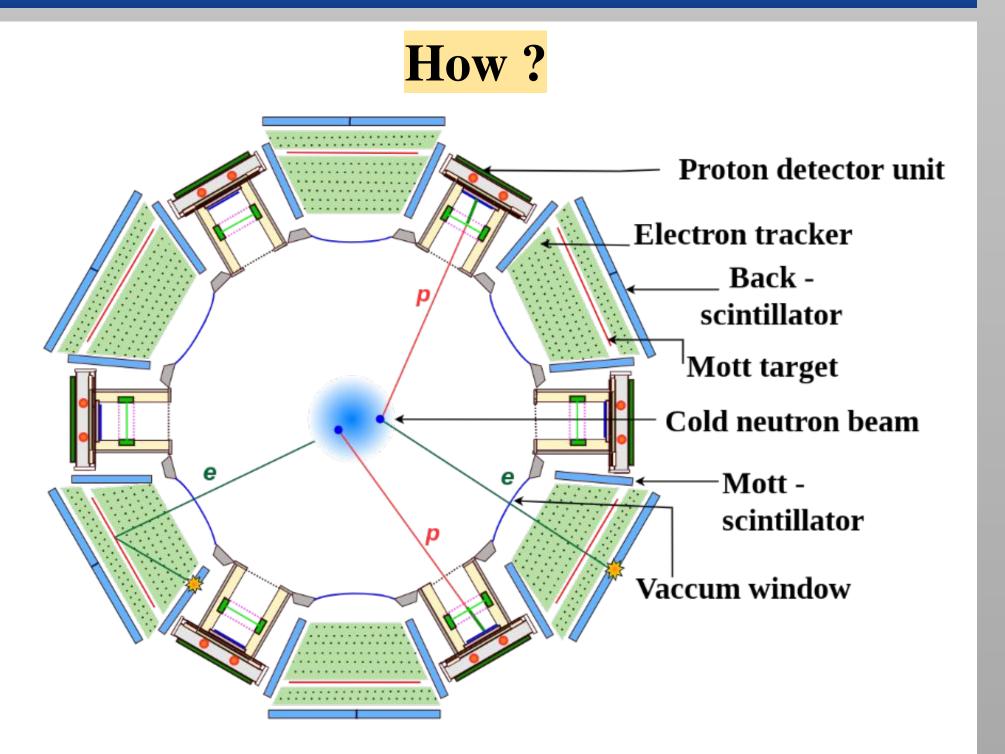
Motivation

σ

Idea !

- Measurement of the angular correlations in the decay of polarized cold neutron with full kinematic reconstruction of event
- Differential decay rate of polarised neutron:

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} \sim 1 + \mathbf{a}\frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{v}} + \mathbf{b}\frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[\mathbf{A}\frac{\mathbf{p}}{E_{e}} + \mathbf{B}\frac{\mathbf{q}}{E_{v}} + \mathbf{D}\frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{v}}\right]$$


Why?

"Search for BSM physics via transverse electron polarisation"

Measurement of σ_⊥ ⇒access to coefficients X (= H, L, N, R, S, U, V) which are linear combination of BSM - scalar and tensor couplings:

 $X = X_{SM} + X_{FSI} + C_{ReS} \operatorname{ReS} + C_{ReT} \operatorname{ReT} + C_{ImS} \operatorname{ImS} + C_{ImT} \operatorname{ImT}$

where,
$$\mathbf{S} = \frac{C_{\mathrm{S}} + C_{\mathrm{S}}'}{C_{\mathrm{V}}}$$
, $\mathbf{T} = \frac{C_{\mathrm{T}} + C_{\mathrm{T}}}{C_{\mathrm{A}}}$

$$+ \sigma_{\perp} \left[\mathbf{H} \frac{\mathbf{q}}{E_{v}} + \mathbf{L} \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{v}} + \mathbf{N} \frac{\langle \mathbf{J} \rangle}{J} + \mathbf{R} \frac{\langle \mathbf{J} \rangle}{J} \times \frac{\mathbf{p}}{E_{e}} \right. \\ \left. + \mathbf{S} \frac{\langle \mathbf{J} \rangle}{J} \frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{v}} + \mathbf{U} \frac{\mathbf{q}}{E_{v}} \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} + \mathbf{V} \frac{\mathbf{q}}{E_{v}} \times \frac{\langle \mathbf{J} \rangle}{J} \right]$$

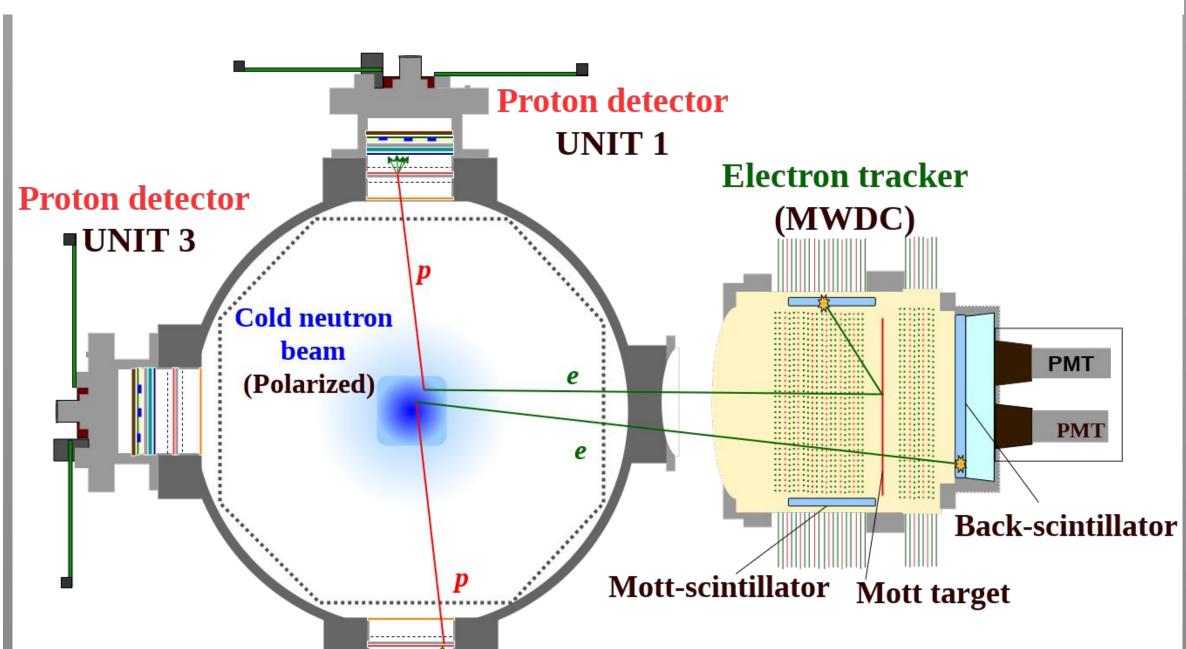
- Significant improvement of constraints on ReS, ReT, ImS, ImT if precision of *H*, *L*, *N*, *R*, *S*, *U*, *V* measurement: **5** x 10⁻⁴
- Stringent constraints on e.g. leptoquark exchange model, R-parity violating Minimal Supersymmetric Standard Model (MSSM) and parameters of Effective Field Theories (EFT)

The ultimate **BRAND** - 3 experimental setup

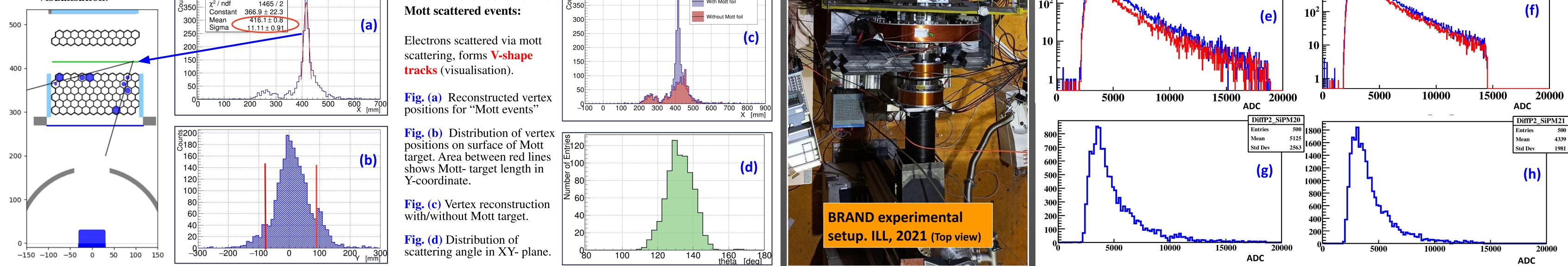
BRAND - 0 : The initial phase

In Sept-Oct 2021 first experiment with the prototype of the **BRAND** apparatus was performed at Institut Laue-Langevin (ILL), Grenoble.

Decay source :


- Longitudinally polarised cold neutron
 beam (PF1B, ILL, Grenoble).
 Polarization > 99.0 %
 Flux ~ 4 x 10⁸ n/cm² s
- Neutron polarisation was guided by arrangement of permanent magnets and magnetic coils
- Passes through decay chamber with

Electron detection:


- **3D-Tracking** in low mass, low Z Multi Wire Drift Chamber (MWDC) XY-plane → Drift-time
- XZ-plane Charge division method
- Plastic scintillator for energy measurement & Trigger
 Back-scintillator : PM readout
 Mott-scintillators : SiPM readout

Proton detection:

- Acceleration of recoil protons in external electric field (10-25 keV)
- Conversion of proton to electron bunches with LiF foil
- Detection of electron bunches in **plastic scintillators (25 µm thin)** with SiPM readout

 vacuum ~ 10⁻⁴ - 10⁻⁵ mbar Vacuum tight thin window for transfer of β particles (with supporting Kevlar mesh) 	with Mott scattering	• Vertex reconstruction with time of flight (TOF) and reconstructed electron trajectory		
Setup & Preliminary Analysis				
Electrons:	Direct (Registered in Back-scintillate	or)	Protons:	
<figure></figure>		red circle) ons & 207Bi & Background	One of the proton detectors with 3 p-e converter foils framed with grounded and protection grids Font-end electronics with system for the proton detector for the proton detector grids Image: Strain of the proton detectors with 3 p-e converter foils framed with grounded and protection grids Image: Strain of the proton detector is system for the proton detector for the proton detector for the proton detector (for two exemplary SiPMs): Fig. (e, f) Spectra for neutron beam ON / OFF. Fig. (g, h) Spectra with subtracted between the subtra	etector
Visualisation: Entries 2324 χ^2/ndf 1465/2	Vertex reconstruction of the \$\$ 400	With Mott foil	Beam OFF Beam OFF	OFF

Conclusion

More information

JG|U

Results from the first experiment are promising. Some experimental problems are identified and solutions are under development. Necessary improvements are foreseen. (Analysis is ongoing...).

K. Bodek et al., EPJ Web of Conference, 262, 01014 (2022).
K. Dhanmeher. et al., Pos PANIC2021 (2022) 099.
D. Rozpędzik. et al., Pos PANIC2021 (2022) 432.

(This work has been supported in part by The National Science Centre, Poland, under the grant No. UMO-2018/29/B/ST2/02505)

