Dual-Polarity Ion Drift Chamber: Experimental results with Xe-SF₆ mixtures A.P. Marques², D.J.G. Marques^{3,4}, N.G.S. Duarte¹, J.P.M. Teles¹, A.F.V. Cortez⁵, A.M.F. Trindade², J. Escada², F.P. Santos^{1,2} and F.I.G.M. Borges^{1,2,⋆} UNIVERSIDADE Ð **COIMBRA** *Corresponding author: filipa.borges@coimbra.lip.pt ¹Department of Physics, Faculty of Sciences and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal; ²Laboratory of Instrumentation and Experimental Particle Physics - LIP, Rua Larga, 3004-516 Coimbra, Portugal; ³Gran Sasso Science Institute, viale Francesco Crispi, 7 - 67100 LAquila, Italy; ⁴Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, I-67100, Italy; ⁵Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague 1, Czech Republic ### Introduction - This gas detectors, the mobility of ions directly affects the attainable rate capability, spatial resolution, and pulse shape formation [1] - The positive ions formed at the amplification stage may have a negative effect as their production rate creates space charge effects distorting the electric field - Electronegative molecules are seen as an obstacle in gas detectors, capturing the drifting electrons leading to a reduction in the detector's signal amplitude - Recently, electronegative gases (e.g. SF₆) have been used to improve the spatial resolution by exploiting the ions' reduced diffusion when compared with ## Negative Ion Drift and Ion Mobility Diffusion coefficient (D), in m^2/s : $$D = \frac{2}{3\sqrt{\pi}} \frac{1}{p \cdot \sigma_0} \sqrt{\frac{(kT)^3}{m}}$$ ${m k}$ - Boltzmann's constant T - temperature p - pressure m - charge's mass $\boldsymbol{\sigma}_0$ - total collision cross section of a charged particle with a molecule Ions have a 10^2 - 10^3 times smaller diffusion comparing to electrons, which leads to better spatial resolution Possible to determine the z-position of an ionisation event and reconstruct its 3-D track, improving the fiducialisation and background discrimination The measured z-coordinate depends v_d - average ion velocity on the value of the ions' mobilities: $$\left. \begin{array}{l} v_d = K \cdot E \\ K = K_0 \cdot N/N_0 \end{array} \right\} \Rightarrow \frac{v_d}{E} \cdot \frac{N}{N_0}$$ Langevin's polarization limit [1]: $$K_{pol} = 13.88/\sqrt{\alpha\mu}$$ μ - ion-neutral reduced mass lpha - neutral polarizability in Å 3 of the neutral atom/molecule K - ion mobility K_0 - reduced ion mobility ${m N}$ - gas number density N_0 - Loschmidt constant Blanc's empirical law [1]: $$1/K = \sum_{i=1}^{N} f_i/K_i$$ K_i - mobility of an ion in the gas i f_i - fraction of the gas i in the mixture with N components # Working Principle Collection grid Frisch grid CsI photocathod GFM ÌΕ̈́ field rings - ① A xenon UV lamp emits photons that hit a CsI photocathode deposited on top of a GEM, releasing photoelectrons - The electrons are guided to the GEM holes due to an electric field where they are accelerated and generate: Positive ions (electron impact ionisation) or Negative ions in electronegative mixtures (immediate attachment or energy loss in inelastic scatterings and consequent attachment) - The ions drift towards the top/bottom double-grid depending on their po- - The ions induce a signal in the Collection grid after the Frisch grid which is converted to voltage and fed to a digital oscilloscope (128 pulses - The peaks in the ions' time-of-arrival are fitted to Gaussian curves - The ion's reduced mobility is calculated from the centroid of each \mathbf{peak} (the discharge of the UV flash lamp is used as a t_0 time trigger) ### Conclusions and Future Work - This detector determines the mobilities of negative ions in mixtures - The results, for the mixture Xe-SF₆, are fairly in accordance with the expected using the Langevin's polarization limit and Blanc's empirical law - Future studies will focus on different electronegative gases in mixtures at higher pressures ### Acknowledgements This work was supported by the RD51 Collaboration/CERN, through the common project CERN/FIS-INS/0026/2019. A.P.Marques was supported by a FCT PhD grant 2021.05576.BD. D.J.G. Marques was supported by a scholarship granted through the project CERN/FIS-INS/0025/2017. A.M.F. Trindade was supported by a FCT PhD grant SFRH/BD/116825/2016. ### References D.J.G. Marques et al. Dual-Polarity Ion Drift Chamber: A new system to measure the mobility of positive and negative ions. NIM A, 1029:166416,