Dual-Polarity Ion Drift Chamber: Experimental results with Xe-SF$_6$ mixtures

A.P. Marques2, D.J.G. Marques3,4, N.G.S. Duarte1, J.P.M. Teles1, A.F.V. Cortez2, A.M.F. Trindade2, J. Escada2, F.P. Santos1,2 and F.I.G.M. Borges1,2,*

*Corresponding author: f1lipa.borges@coaboa.11pt

1Department of Physics, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; 2Laboratory of Instrumentation and Experimental Particle Physics - LIP, Rua Larga, 3004-516 Coimbra, Portugal; 3Gran Sasso Science Institute, viale Francesco Crispi, 7 - 67100 L’Aquila, Italy; 4Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi, L’Aquila, 67100, Italy. 5Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague 1, Czech Republic

Introduction

- In gas detectors, the mobility of ions directly affects the attainable rate capability, spatial resolution, and pulse shape formation [1].
- The positive ions formed at the amplification stage may have a negative effect as their production rate creates space charge effects distorting the electric field.
- Electronegative molecules are seen as an obstacle in gas detectors, capturing the drifting electrons leading to a reduction in the detector’s signal amplitude.
- Recently, electronegative gases (e.g. SF$_6$) have been used to improve the spatial resolution by exploiting the ions’ reduced diffusion when compared with electrons.

Negative Ion Drift and Ion Mobility

Diffusion coefficient (D), in m2/s:

$$D = \frac{2(\frac{kT}{m})^{1/2}}{3\sqrt{\pi}}$$ where:

- k - Boltzmann’s constant
- T - temperature
- p - pressure
- m - charge's mass
- σ_0 - total collision cross section of a charged particle with a molecule

The measured z-coordinate depends on the value of the ions’ mobility:

$$v_z = \frac{qI}{m}$$

where v_z - average ion velocity

K - ion mobility

K$_{reduced}$ - reduced ion mobility

N - gas number density

N$_0$ - Loschmidt constant

Langenstein’s polarization limit [1]:

$$I_{polar} = \frac{13.88\sqrt{\mu_\alpha}}{d_\alpha}$$

where μ - ion-neutral reduced mass

α - neutral polarizability in Å3

Blanc’s empirical law [1]:

$$1/K = \sum_{i} (1/k_i)$$

where k_i - mobility of an ion in the gas i

x_i - fraction of the gas i in the mixture with N components

Data Analysis

- The peaks in the ions’ time-of-arrival are fitted to Gaussian curves.
- The ion’s reduced mobility is calculated from the centroid of each peak (the discharge of the UV flash lamp is used as a t_0 time trigger).

Conclusions and Future Work

- This detector determines the mobilities of negative ions in mixtures for large volume detectors.
- The results, for the mixture Xe-SF$_6$, are fairly in accordance with the expected using the Langenstein’s polarization limit and Blanc’s empirical law.
- Future studies will focus on different electronegative gases in mixtures at higher pressures.

Working Principle

A xenon UV lamp emits photons that hit a CsI photodetector deposited on top of a GEM, releasing photoelectrons.

The electrons are guided to the GEM holes due to an electric field where they are accelerated and generate: Positive ions (electron impact ionisation) or Negative ions in electronegative mixtures (immediate attachment or energy loss in inelastic scatterings and consequent attachment).

The ions drift towards the top/bottom double-grid depending on their polarity.

The ions induce a signal in the Collection grid after the Frisch grid which is converted to voltage and fed to a digital oscilloscope (128 pulses average).

Results

This work was supported by the RD51 Collaboration/CERN, through the common project CERN/FIS-INS/0026/2019. A.P. Marques was supported by a FCT PhD grant 2021.55570.BD. D.J.G. Marques was supported by a scholarship granted through the project CERN/FIS-INS/0025/2017. A.M.F. Trindade was supported by a FCT PhD grant SFHR/BID/116825/2016.

References