High Granularity Small-Pad Resistive Micromegas for Rates above MHz/cm²

15th Pisa Meeting on Advanced Detectors, 22 - 28 May 2022

RHUM Collaboration: M. Alviggi^{1,3}, M. T. Camerlingo^{4,5}, V. D'Amico^{4,5}, M. Della Pietra^{1,3}, C. Di Donato^{2,3}, R. Di Nardo^{4,5}, C. Gimmillaro⁴, P. Iengo⁶, M. Iodice⁵, F. Petrucci^{4,5}, G. Sekhniaidze³, **M. Sessa**^{4,5}

¹Università degli Studi di Napoli Federico II, ²Università degli Studi di Napoli Parthenope, ³INFN Napoli, ⁴Università degli Studi Roma Tre, ⁵INFN Roma Tre, ⁶CERN

Micromegas detector technology

- Resistive Micromegas, which belongs to the family of the Micro Pattern Gaseous Detectors (MPGD), demonstrated to be a solid detector technology for HEP experiments
- Drift region (~5 mm width, E~60 V/mm) and Amplification region (~100 μm width, E~5 kV/mm) separated by a metallic micro-mesh, supported by 0.8 mm diameter pillars
- This geometrical and electrical configuration guarantees a fast ion evacuation, fundamental for high rate applications
- Restive anodic plane to suppress discharge intensity

Rate capability

RHUM project

Roadmap for RHUM R&D project (Resistive High granUlarity Micromegas)

- Develop an MPGD able to efficiently work at particle rates up to several tens MHz/cm²
- Implement a small pad readout to reduce the occupancy
- Optimize the spark protection resistive scheme to have stability of operation at high rate/gain
- Demonstrate the detector scalability to large surfaces
- Simplify the construction techniques for industrial production

Anodic plane and spark protection resistive scheme

- Readout plane segmented in pads O(mm²) to ensure high rate capability and good spatial resolution in both coordinate
- All the prototypes share the same anodic plane segmentation: 16 x 48 = 768 readout pads (1 mm x 3 mm), covering 4.8 x 4.8 cm² active area

- 8 keV X-rays peak from a Cu target with different intensities
- Using Cu filters, more than 4 orders of magnitude of fluxes have been explored
- Different behaviors for two different resistive schemes have been observed:
- PAD-P3 loses gain slowly, but at constant rate, mostly due to the charging-up effect
- DLC-20 has constant gain, up until ~1 MHz/cm², above which its gain loss is fully accounted by Ohmic gain drop

Gain measurements

• Measurements performed using ⁵⁵Fe source with ~20kHz rate

• Lower gain of PAD-P type with respect to DLC sistematiically observed for most of the prototypes. Most likely due to the dielectric charging-up of the kapton surrounding the resistive pads. The different slope of PAD-P3 could be due to an increase of charging-

• Different implementation of the resistive protection system against discharges

PAD-patterned

Prototype name: PAD-P3

Resistive pads connected to the readout copper pads through embedded resistor Each pad is completely separated from the neighbours Resistance from top pad to copper pads ~ 7-5 M Ω

Diamond-Like Carbon uniform layers

Prototype names: DLC20, SBU3, DLC-SG (with elongated pillars, 5.3 mm long) Two parallel layers of DLC connected through conducting vias Resistivity of 20-50 M Ω / \Box for various prototypes

Position resolution

- Test beam data recorded at SPS with ~100 GeV muon beam
- Position in every detector computed using the cluster centroid. External tracking, performed using two resistive-strips Micromegas with two-dimensional readout

up with gain

• 2% of isobutane allows to reach the same gains at lower amplification voltage and guarantees a better detector stability during operation

Detector efficiency

- Test beam data recorded at SPS with ~100 GeV muon beam
- Detector efficiency measured requiring clusters within 1.5 mm from the extrapolated track position in the precision coordinate
- For most of the prototypes detector efficiency > 97%
- Lower efficiency (~1% less) for DLC-SG, due to the larger pillar size

- Position resolution obtained fitting the residual distribution in the precision coordinate w.r.t. the reconstructed muon track
- Position resolution affected by several parameters (resistivity, capacitive coupling among the pads and different charge spread) impacting the cluster size

Conclusions and perspectives

- Different spark protection resistive layouts have been implemented on several small-pad Micromegas prototypes
- From tests and comparison among them we reached: stable operation up to ~10 MHz/cm² with gain ~10⁴ detector efficiency > 97% position resolution < 100 μm
- Future R&D activities will focus on: tracking in high rate environment, detector scalability to larger area, time resolution and ageing studies

Reference 1: M. Alviggi et al., Construction and test of a small-pad resistive Micromegas prototype, JINST 13(2018)P11019 Reference 2: M.Iodice et al., Small-Pad Resistive Micromegas: Rate capability for different spark protection resistive schemes, JINST 15(2020)C09043

Contacts: marco.sessa@cern.ch