sRPC: an RPC based on resistive MPGD technology <u>G. Bencivenni</u>¹, R. De Oliveira², G. Felici¹, M. Gatta¹, M. Giovannetti¹, G. Morello¹, G. Papalino¹, M. Poli Lener¹ - ¹LNF — INFN, ² CERN #### **Classical RPC** - · bulk resistivity electrodes - recovery time proportional to volume resistivity and electrode thickness #### **Surface-RPC** - surface resistivity electrodes manufactured with sputtering techniques of Diamond-Like-Carbon on flexible supports (scalable and cost-effective technology) - electrodes with a surface resistivity in a very wide range, 0.001 \div 10 G Ω/\Box - high density current evacuation schemes, (similar to those used for μ -RWELL), can be implemented to achieve high rate #### **Time resolution** Typical ~1 ns time resolution obtained with different sRPC prototypes ### **High stability** >1kV wide operating voltage achieved with cathode passivation ## **High-rate layout** - Conductive grid: ground pitch ~1 cm, DLC resistivity ~7GΩ/□ - Optimizing ground-pitch & reducing surface resistivity a rate capability > 20kHz/cm² with m.i.p should be easily achievable