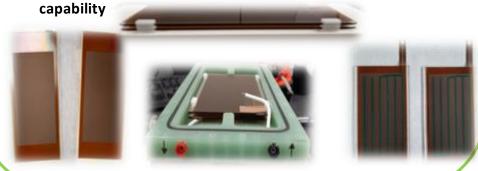
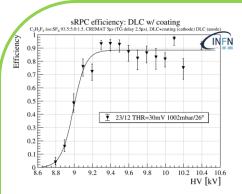
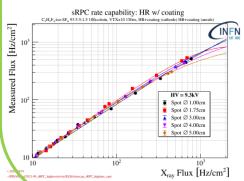
sRPC: an RPC based on resistive MPGD technology

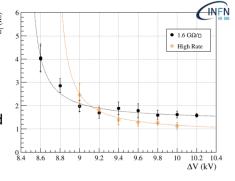

<u>G. Bencivenni</u>¹, R. De Oliveira², G. Felici¹, M. Gatta¹, M. Giovannetti¹, G. Morello¹, G. Papalino¹, M. Poli Lener¹ - ¹LNF — INFN, ² CERN


Classical RPC

- · bulk resistivity electrodes
- recovery time proportional to volume resistivity and electrode thickness

Surface-RPC


- surface resistivity electrodes manufactured with sputtering techniques of Diamond-Like-Carbon on flexible supports (scalable and cost-effective technology)
- electrodes with a surface resistivity in a very wide range, 0.001 \div 10 G Ω/\Box
- high density current evacuation schemes, (similar to those used for μ -RWELL), can be implemented to achieve high rate


Time resolution

Typical ~1 ns time resolution obtained with different sRPC prototypes

High stability

>1kV wide operating voltage achieved with cathode passivation

High-rate layout

- Conductive grid: ground pitch ~1 cm, DLC resistivity ~7GΩ/□
- Optimizing ground-pitch & reducing surface resistivity a rate capability > 20kHz/cm² with m.i.p should be easily achievable